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Abstract
We study a state-of-the-art incremental cycle detection algorithm due to Bender, Fineman, Gilbert,
and Tarjan. We propose a simple change that allows the algorithm to be regarded as genuinely
online. Then, we exploit Separation Logic with Time Credits to simultaneously verify the correctness
and the worst-case amortized asymptotic complexity of the modified algorithm.
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Supplement Material The Coq development is accessible at https://gitlab.inria.fr/agueneau/
incremental-cycles, and the mechanized metatheory of Separation Logic with Time Credits is
available at https://gitlab.inria.fr/charguer/cfml2.

1 Introduction

A good algorithm must be correct. Yet, to err is human: algorithm designers and algorithm
implementors sometimes make mistakes. Although testing can detect mistakes, it cannot in
general prove their absence. Thus, when high reliability is desired, algorithms should ideally
be verified. A “verified algorithm” traditionally means an algorithm whose correctness has
been verified: it is a package of an implementation, a specification, and a machine-checked
proof that the algorithm always produces a result that the specification permits.

A growing number of verified algorithms appear in the literature. To cite just a very few
examples, in the area of graph algorithms, Lammich and Neumann [27, 26] verify a generic
depth-first search algorithm which, among other applications, can be used to detect a cycle in
a directed graph; Lammich [25], Pottier [36], and Chen et al. [10, 9] verify various algorithms
for finding the strongly connected components of a directed graph. A verified algorithm can
serve as a building block in the construction of larger verified software: for instance, Esparza
et al. [12] use a cycle detection algorithm as a component in a verified LTL model-checker.

However, a good algorithm must not just be correct: it must also be fast, and reliably so.
Many algorithmic problems admit a simple, inefficient solution. Therefore, the art and science
of algorithm design is chiefly concerned with imagining more efficient algorithms, which often
are more involved as well. Due to their increased sophistication, these algorithms are natural
candidates for verification. Furthermore, because the very reason for existence of these
algorithms is their alleged efficiency, not only their correctness, but also their complexity,
should arguably be verified.

https://gitlab.inria.fr/agueneau/incremental-cycles
https://gitlab.inria.fr/agueneau/incremental-cycles
https://gitlab.inria.fr/charguer/cfml2
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Following traditional practice in the algorithms literature [22, 43], we study the complexity
of an algorithm based on an abstract cost model, as opposed to physical worst-case execution
time. Furthermore, we wish to establish asymptotic complexity bounds, such as O(n), as
opposed to concrete bounds, such as 3n+ 5. While bounds on physical execution time are
of interest in real-time applications, they are difficult to establish and highly dependent on
the compiler, the runtime system, and the hardware. In contrast, an abstract cost model
allows reasoning at the level of source code. We fix a specific model in which every function
call has unit cost and every other primitive operation has zero cost. Although one could
assign a nonzero cost to each primitive operation, that would make no difference in the
end: an asymptotic complexity bound is independent of the costs assigned to the primitive
operations, and is robust in the face of minor changes in the implementation.

In prior work, Charguéraud and Pottier [8] verify the correctness and the worst-case
amortized asymptotic complexity of an OCaml implementation of the Union-Find data
structure. They establish concrete bounds, such as 4α(n) + 12, as opposed to asymptotic
bounds, such as O(α(n)). This case study demonstrates that it is feasible to mechanize
such a challenging complexity analysis, and that this analysis can be carried out based on
actual source code, as opposed to pseudo-code or an idealized mathematical model of the
data structure. Charguéraud and Pottier use CFML [6, 7], an implementation inside Coq
of Separation Logic [37] with Time Credits [3, 8, 17, 18, 32]. This program logic makes it
possible to simultaneously verify the correctness and the complexity of an algorithm, and
allows the complexity argument to depend on properties whose validity is established as part
of the correctness argument. We provide additional background in Section 2.

In subsequent work, Guéneau, Charguéraud and Pottier [17] formalize the O notation,
propose a way of advertising asymptotic complexity bounds as part of Separation Logic
specifications, and implement support for this approach in CFML. They present a collection
of small illustrative examples, but do not carry out a challenging case study.

One major contribution of this paper is to present such a case study. We verify the
correctness and worst-case amortized asymptotic complexity of an incremental cycle detection
algorithm (and data structure) due to Bender, Fineman, Gilbert, and Tarjan [4, §2]. With this
data structure, the complexity of building a directed graph of n vertices and m edges, while
incrementally ensuring that no edge insertion creates a cycle, is O(m ·min(m1/2, n2/3) + n).
Although its implementation is relatively straightforward, its design is subtle, and it is far
from obvious, by inspection of the code, that the advertised complexity bound is respected.

As a second contribution, on the algorithmic side, we simplify and enhance Bender et
al.’s algorithm. To handle the insertion of a new edge, the original algorithm depends on a
runtime parameter, which limits the extent of a certain backward search. This parameter
influences only the algorithm’s complexity, not its correctness. Bender et al. show that
setting it to min(m1/2, n2/3) throughout the execution of the algorithm allows achieving the
advertised complexity. This means that, in order to run the algorithm, one must anticipate
the final values of m and n. This seems at least awkward, or even impossible, if one wishes
to use the algorithm in an online setting, where the sequence of operations is not known
in advance. Instead, we propose a modified algorithm, where the extent of the backward
search is limited by a value that depends only on the current state. The pseudocode for both
algorithms appears in Figure 2; it is explained later on (Section 5). The modified algorithm
has the same complexity as the original algorithm and is a genuine online algorithm. It is
the one that we verify.

As a third contribution, on the methodological side, we switch from N to Z in our
accounting of execution costs, and explain why this leads to a significant decrease in the
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number of proof obligations. In our previous work [8, 17], costs are represented as elements
of N. In this approach, at each operation of (say) unit cost in the code, one must prove that
the number of execution steps performed so far is less than the number of steps advertised in
the specification. This proof obligation arises because, in N, the equality m+ (n−m) = n

holds if and only if m ≤ n holds. In contrast, in Z, this equality holds unconditionally. For
this reason, representing costs as elements of Z can dramatically decrease the number of
proof obligations (Section 3). Indeed, one must then verify just once, at the end of a function
body, that the actual cost is less than or equal to the advertised cost. The switch from N
to Z requires a modification of the underlying Separation Logic, for which we provide a
machine-checked soundness proof.

Our verification effort has had some practical impact already. For instance, the Dune
build system [41] needs an incremental cycle detection algorithm in order to reject circular
build dependencies as soon as possible. For this purpose, the authors of Dune developed
an implementation of Bender et al.’s original algorithm, which we recently replaced with
our improved and verified algorithm [16]. Our contribution increases the trustworthiness of
Dune’s code base, without sacrificing its efficiency: in fact, our measurements suggest that
our code can be as much as 7 times faster than the original code in a real-world scenario. As
another potential application area, it is worth mentioning that the second author (Jourdan)
has deployed an as-yet-unverified incremental cycle detection algorithm in the kernel of the
Coq proof assistant [44], where it is used to check the satisfiability of universe constraints [39,
§2]. At the time, this yielded a dramatic improvement in the overall performance of Coq’s
proof checker: the total time required to check the Mathematical Components library dropped
from 25 to 18 minutes [23]. The algorithm deployed inside Coq is more general than the
verified algorithm considered in this paper, as it also maintains strong components, as in
Section 4 of Bender et al.’s paper [4]. Nevertheless, we view the present work as one step
towards verifying Coq’s universe inference system.

In summary, the main contributions of this paper are:
A simple yet crucial improvement to Bender et al.’s incremental cycle detection algorithm,
making it a genuine online algorithm;
An implementation of it in OCaml as a self-contained, reusable data structure;
A machine-checked proof of the functional correctness and worst-case amortized asymp-
totic complexity of this implementation.
The discovery of the nonobvious fact that counting time credits in Z leads to significantly
fewer proof obligations, together with a study of the metatheory of Separation Logic with
Time Credits in Z and support for it in CFML.

Our code and proofs are available online (Supplement Material). Our methodology is modular:
at the end of the day, the verified data structure is equipped with a succinct specification
(Figure 1) which is intended to serve as the sole reference when verifying a client of the
algorithm. We believe that this case study illustrates the great power and versatility of our
approach, and we claim that this approach is generally applicable to many other nontrivial
data structures and algorithms.

2 Separation Logic with Time Credits

Hoare Logic [19] allows verifying the correctness of an imperative algorithm by using assertions
to describe the state of the program. Separation Logic [37] improves modularity by employing
assertions that describe only a fragment of the state and at the same time assert the unique
ownership of this fragment. In general, a Separation Logic assertion claims the ownership
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of certain resources, and (at the same time) describes the current state of these resources.
A heap fragment is an example of a resource.

Separation Logic with Time Credits [3, 8, 32] is a simple extension of Separation Logic
in which “a permission to perform one computation step” is also a resource, known as a
credit. The assertion $1 represents the unique ownership of one credit. The logic enforces
the rule that every function call consumes one credit. Credits do not exist at runtime; they
appear only in assertions, such as pre- and postconditions, loop invariants, and data structure
invariants. For instance, the Separation Logic triple:

∀ g G. { IsGraph g G ∗ $(3 |edges G|+ 5) } dfs(g) { IsGraph g G }

can be read as follows. If initially g is a runtime representation of the graph G and if 3m+ 5
credits are at hand, where m is the number of edges of G, then the function call dfs(g)
executes safely and terminates; after this call, g remains a valid representation of G, and no
credits remain.

In the dfs example, assuming that the assertion IsGraph g G is credit-free (which means,
roughly, that this assertion definitely does not own any credits), the precondition guarantees
the availability of 3m+ 5 credits (and no more), and no credits remain in the postcondition.
So, this triple guarantees that the execution of dfs(g) involves at most 3m+ 5 computation
steps. Later on in this paper (Section 8), we define IsGraph g G in such a way that it is not
credit-free: its definition involves a nonnegative number of credits. If that were the case
in the above example, then 3m + 5 would have to be interpreted as an amortized bound.
Amortization is discussed in greater depth in the next section (Section 4).

Admittedly, 3m + 5 is too low-level a bound: it would be preferable to state that the
cost of dfs(g) is O(m), a more abstract and more robust specification. Following Guéneau et
al. [17], this can be expressed in the following style:

∃(f : Z→ Z). nonnegative f ∧ monotonic f ∧ f �Z λm.m

∧ ∀ g G. { IsGraph g G ∗ $ f(|edges G|) } dfs(g) { IsGraph g G }

The concrete function λm.(3m+ 5) is no longer visible; it has been abstracted away under
the name f . The specification states that f is nonnegative (∀m. f(m) ≥ 0), monotonic
(∀mm′. m ≤ m′ ⇒ f(m) ≤ f(m′)), and dominated by the function λm.m, which means that
f grows linearly.

The soundness of Separation Logic with Time Credits stems from the fact that a credit
cannot be spent twice. Technically, the soundness metatheorem for Separation Logic with
Time Credits guarantees that, for every valid Hoare triple, the following inequality holds:

credits in precondition ≥ steps taken + credits in postcondition.

This type of metatheorem is proved by Charguéraud and Pottier [8, §3] and by Mével et
al. [32] for Separation Logics with nonnegative credits.

The CFML tool can be viewed as an implementation of Separation Logic with Time
Credits for OCaml inside Coq. CFML enables reasoning in forward style. The user inspects
the source code, step by step. At each step, she is allowed to visualize and manipulate a
description of the current program state in the form of a Separation Logic formula. This
formula not only describes the current heap, but also indicates how many time credits are
currently available. Guéneau et al. [17, §5, §6] describe the deduction rules of the logic and
the manner in which they are applied.
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3 Negative Time Credits

In the original presentations of Separation Logic with Time Credits [3, 8, 17, 18], credits are
counted in N. This seems natural because $n is interpreted as a permission to take n steps
of computation, and a number of execution steps is never a negative value.

In this setting, credits are affine, that is, it is sound to discard them: the law $n  true
holds. The law $(m+n) ≡ $m ∗ $n holds for every m,n ∈ N. This splitting law is used when
one wishes to spend a subset of the credits at hand. Yet, in practice, the law that is most
often needed is a slightly different formulation. Indeed, if n credits are at hand and if one
wishes to step over an operation whose cost is m, the appropriate law is $n ≡ $(n−m) ∗ $m,
which holds only under the side condition m ≤ n. (This is subtraction in N, so m > n implies
n−m = 0.)

This side condition gives rise to a proof obligation, and these proof obligations tend to
accumulate. If n credits are initially at hand and if one wishes to step over a sequence of
k operations whose costs are m1,m2, . . . ,mk, then k proof obligations arise: n −m1 ≥ 0,
n−m1−m2 ≥ 0, and so on, until n−m1−m2− . . .−mk ≥ 0. In fact, these proof obligations
are redundant: the last one alone implies all of the previous ones. Unfortunately, in an
interactive proof assistant such as Coq, it is not easy to take advantage of this fact and
present only the last proof obligation to the user. Furthermore, in the proof of Bender et
al.’s algorithm, we have encountered a more complex situation where, instead of looking at a
straight-line sequence of k operations, one is looking at a loop, whose body is a sequence of
operations, and which itself is followed with another sequence of operations. In this situation,
proving that the very last proof obligation implies all previous obligations may be possible
in principle, but requires a nontrivial strengthening of the loop invariant, which we would
rather avoid, if at all possible!

To avoid this accumulation, in this paper, we work in a variant of Separation Logic where
Time Credits are counted in Z. Its basic laws are as follows:

$0 ≡ true zero credit is equivalent to nothing at all
$(m+ n) ≡ $m ∗ $n credits are additive

$n ∗ [n ≥ 0]  true nonnegative credits are affine; negative credits are not

Quite remarkably, in the second law, there is no side condition. In particular, this law
implies $0 ≡ $n ∗ $(−n), which creates positive credit out of thin air, but creates negative
credit at the same time. As put by Tarjan [42], “we can allow borrowing of credits, as long
as any debt incurred is eventually paid off”. In the third law, the side condition n ≥ 0
guarantees that a debt cannot be forgotten. Without this requirement, the logic would be
unsound, as the second and third laws together would imply $0  $1.

Because the second law has no side condition, stepping over a sequence of k operations
whose costs are m1,m2, . . . ,mk gives rise to no proof obligation at all. At the end of
the sequence, n −m1 −m2 − . . . −mk credits remain, which the user typically wishes to
discard. This is done by applying the third law, giving rise to just one proof obligation:
n−m1−m2− . . .−mk ≥ 0. In summary, switching from N to Z greatly reduces the number
of proof obligations that appear about credits.

A secondary benefit of this switch is to reduce the number of conversions between N
and Z that must be inserted in specifications and proofs. Indeed, we model OCaml’s signed
integers as mathematical integers in Z. (We currently ignore the mismatch between OCaml’s
limited-precision integers and ideal integers. It should ideally be taken into account, but this
is orthogonal to the topic of this paper.)
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InitGraph
∃k. {$k} init_graph() {λg.IsGraph g ∅}

DisposeGraph
∀g G. IsGraph g G  true

AddVertex
∀g Gv.
let m,n := |edges G| , |vertices G| in
v 6∈ vertices G =⇒{

IsGraph g G ∗
$(ψ (m,n+ 1)− ψ (m,n))

}
(add_vertex g v){
λ(). IsGraph g (G+ v)

}

AddEdge
∀g Gv w.
let m,n := |edges G| , |vertices G| in
v, w ∈ vertices G ∧ (v, w) /∈ edges G =⇒{

IsGraph g G ∗
$(ψ (m+ 1, n)− ψ (m,n))

}
(add_edge_or_detect_cycle g v w)
λres. match res with
| Ok⇒ IsGraph g (G+(v, w))
| Cycle⇒ [w −→∗G v]


Acyclicity
∀g G. IsGraph g G 

IsGraph g G ∗ [∀x. x 6−→ +
G x]

Complexity
nonnegative ψ ∧ monotonic ψ ∧
ψ �Z×Z λ(m,n). (m ·min(m1/2, n2/3) + n)

Figure 1 Specification of an incremental cycle detection algorithm.

Because negative time credits are not affine, it is not the case here that every assertion is
affine, as in Iris [24] or in earlier versions of CFML. Affine and non-affine assertions must
now be distinguished: a points-to assertion, which describes a heap-allocated object, remains
affine; the assertion $n is affine if and only if n is nonnegative; an abstract assertion, such as
IsGraph g G, may or may not be affine, depending on the definition of IsGraph. (Here, it is
in fact affine; see §4 and DisposeGraph in Figure 1.) We have adapted CFML so as to
support this distinction.

From a metatheoretical perspective, the introduction of negative time credits requires
adapting the proof of soundness of Separation Logic with Time Credits. We have success-
fully updated our pre-existing Coq proof of this result [8]; an updated proof is available
online (Supplement Material).

4 Specification of the Algorithm

The interface for an incremental cycle detection algorithm consists of three public operations:
init_graph, which creates a fresh empty graph, add_vertex, which adds a vertex, and
add_edge_or_detect_cycle, which either adds an edge or report that this edge cannot be
added because it would create a cycle.

Figure 1 shows a formal specification for an incremental cycle detection algorithm. It
consists of six statements. InitGraph, AddVertex, and AddEdge are Separation Logic
triples: they assign pre- and postconditions to the three public operations. DisposeGraph
and Acyclicity are Separation Logic entailments. The last statement, Complexity,
provides a complexity bound. It is the only statement that is specific to the algorithm
discussed in this paper. Indeed, the first five statements form a generic specification, which
any incremental cycle detection algorithm could satisfy.

The six statements in the specification share two variables, namely IsGraph and ψ. These
variables are implicitly existentially quantified in front of the specification: a user of the
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algorithm must treat them as abstract.
The predicate IsGraph is an abstract representation predicate, a standard notion in

Separation Logic [35]. It is parameterized with a memory location g and with a mathematical
graph G. The assertion IsGraph g G means that a well-formed data structure, which
represents the mathematical graph G, exists at address g in memory. At the same time, this
assertion denotes the unique ownership of this data structure.

Because this is Separation Logic with Time Credits, the assertion IsGraph g G can also
represent the ownership of a certain number of credits. For example, for the specific algorithm
considered in this paper, we later define IsGraph g G as ∃L. $φ(G,L) ∗ . . . (Section 8), where
φ is a suitable potential function [42]. φ is parameterized by the graph G and by a map L
of vertices to integer levels. Intuitively, this means that φ(G,L) credits are stored in the
data structure. These details are hidden from the user: φ does not appear in Figure 1. Yet,
the fact that IsGraph g G can involve credits means that the user must read AddVertex
and AddEdge as amortized specifications [42]: the actual cost of a single add_vertex or
add_edge_or_detect_cycle operation is not directly related to the number of credits that
explicitly appear in the precondition of this operation.

The function ψ has type Z×Z→ Z. In short, ψ(m,n) is meant to represent the advertised
cost of a sequence of n vertex creation and m edge creation operations. In other words, it is
the number of credits that one must pay in order to create n vertices and m edges. This
informal claim is explained later on in this section.

InitGraph states that the function call init_graph() creates a valid data structure,
which represents the empty graph ∅, and returns its address g. Its cost is k, where k is an
unspecified constant; in other words, its complexity is O(1).

DisposeGraph states that the assertion IsGraph g G is affine: that is, it is permitted to
forget about the existence of a valid graph data structure. By publishing this statement, we
guarantee that we are not hiding a debt inside the abstract predicate IsGraph. Indeed, to
prove that DisposeGraph holds, we must verify that the potential φ(G,L) is nonnegative
(Section 3).

AddVertex states that add_vertex requires a valid data structure, described by the
assertion IsGraph g G, and returns a valid data structure, described by IsGraph g (G+ v).
(We write G+ v for the result of extending the mathematical graph G with a new vertex v
and G + (v, w) for the result of extending G with a new edge from v to w.) In addition,
add_vertex requires ψ(m,n + 1) − ψ(m,n) credits. These credits are not returned: they
do not appear in the postcondition. They either are actually consumed or become stored
inside the data structure for later use. Thus, one can think of ψ(m,n+ 1)− ψ(m,n) as the
amortized cost of add_vertex.

Similarly, AddEdge states that the cost of add_edge_or_detect_cycle is ψ(m+1, n)−
ψ(m,n). This operation returns either Ok, in which case the graph has been successfully
extended with a new edge from v to w, or Cycle, in which case this new edge cannot be added,
because there already is a path in G from w to v. (The proposition w −→∗G v appears within
square brackets, which convert an ordinary proposition to a Separation Logic assertion.) In
the latter case, the data structure is invalidated: the assertion IsGraph g G is not returned.
Thus, in that case, no further operations on the graph are allowed.

By combining the first four statements in Figure 1, a client can verify that a call to
init_graph, followed with an arbitrary interleaving of n calls to add_vertex andm successful
calls to add_edge_or_detect_cycle, satisfies the specification {$(k + ψ(m,n))} . . . {true},
where k is the cost of init_graph. Indeed, the cumulated cost of the calls to add_vertex
and add_edge_or_detect_cycle forms a telescopic sum that adds up to ψ(m,n)− ψ(0, 0),
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To insert a new edge from v to w and detect potential cycles:
− If L(v) < L(w), insert the edge (v, w), declare success, and exit
− Perform a backward search:
− start from v

− follow an edge (backward) only if its source vertex x satisfies L(x) = L(v)
− if w is reached, declare failure and exit
− if F edges have been traversed, interrupt the backward search
→ in Bender et al.’s algorithm, F is a constant ∆
→ in our algorithm, F is L(v)

− If the backward search was not interrupted, then:
− if L(w) = L(v), insert the edge (v, w), declare success, and exit
− otherwise set L(w) to L(v)

− If the backward search was interrupted, then set L(w) to L(v) + 1
− Perform a forward search:
− start from w

− upon reaching a vertex x:
− if x was visited during the backward search, declare failure and exit
− if L(x) ≥ L(w), do not traverse through x
− if L(x) < L(w), set L(x) to L(w) and traverse x

− Finally, insert the edge (v, w), declare success, and exit

Figure 2 Pseudocode for Bender et al.’s algorithm and for our improved algorithm.

which itself is bounded by ψ(m,n).
Since Separation Logic with Time Credits is sound, the triple {$(k+ψ(m,n))} . . . {true}

implies that the actual worst-case cost of the sequence of operations is k + ψ(m,n). This
confirms our earlier informal claim that ψ(m,n) represents the cost of creating n vertices
and m edges.

Acyclicity states that, from the Separation Logic assertion IsGraph g G, the user can
deduce that G is acyclic. In other words, as long as the data structure remains in a valid
state, the graph G remains acyclic.

Although the exact definition of ψ is not exposed, Complexity provides an asymptotic
bound: ψ(m,n) ∈ O(m ·min(m1/2, n2/3)+n). Technically, the relation �Z×Z is a domination
relation between functions of type Z× Z→ Z [17]. Our complexity bound thus matches the
one published by Bender et al. [4].

5 Overview of the Algorithm

We provide pseudocode for Bender et al.’s algorithm [4, §2] and for our improved algorithm
in Figure 2. The only difference between the two algorithms is the manner in which a
certain internal parameter, named F , is set. The value of F influences the complexity of the
algorithm, not its correctness.

When the user requests the creation of an edge from v to w, finding out whether this
operation would create a cycle amounts to determining whether a path already exists from w

to v. A naïve algorithm could search for such a path by performing a forward search, starting
from w and attempting to reach v.

One key feature of Bender et al.’s algorithm is that a positive integer level L(v) is
associated with every vertex v, and the following invariant is maintained: L forms a pseudo-
topological numbering. That is, “no edge goes down”: if there is an edge from v to w,
then L(v) ≤ L(w) holds. The presence of levels can be exploited to accelerate a search: for
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instance, during a forward search whose purpose is to reach the vertex v, any vertex whose
level is greater than that of v can be disregarded. The price to pay is that the invariant must
be maintained: when a new edge is inserted, the levels of some vertices must be adjusted.

A second key feature of Bender et al.’s algorithm is that it not only performs a forward
search, but begins with a backward search that is both restricted and bounded. It is restricted
in the sense that it searches only one level of the graph: starting from v, it follows only
horizontal edges, that is, edges whose endpoints are both at the same level. Therefore, all of
the vertices that it discovers are at level L(v). It is bounded in the sense that it is interrupted,
even if incomplete, after it has processed a predetermined number of edges, denoted by the
letter F in Figure 2.

A third key characteristic of Bender et al.’s algorithm is the manner in which levels are
updated so as to maintain the invariant when a new edge is inserted. Bender et al. adopt
the policy that the level of a vertex can never decrease. Thus, when an edge from v to w is
inserted, all of the vertices that are accessible from w must be promoted to a level that is at
least the level of v. In principle, there are many ways of doing so. Bender et al. proceed as
follows: if the backward search was not interrupted, then w and its descendants are promoted
to the level of v; otherwise, they are promoted to the next level, L(v) + 1. In the latter
case, L(v) + 1 is possibly a new level. We see that such a new level can be created only if
the backward search has not completed, that is, only if there exist at least F edges at level
L(v). In short, a new level may be created only if the previous level contains sufficiently
many edges. This mechanism is used to control the number of levels.

The last key aspect of Bender et al.’s algorithm is the choice of F . On the one hand, as F
increases, backward searches become more expensive, as each backward search processes up
to F edges. On the other hand, as F decreases, forward searches become more expensive.
Indeed, a smaller value of F leads to the creation of a larger number of levels, and (as
explained later) the total cost of the forward searches is proportional to the number of levels.

Bender et al. set F to a constant ∆, defined as min(m1/2, n2/3) throughout the execution
of the algorithm, where m and n are upper bounds on the final numbers of edges and vertices
in the graph. As explained earlier (Section 1), though, it seems preferable to set F to a
value that does not depend on such upper bounds, as they may not be known ahead of
time. In our modified algorithm, F stands for L(v), where v is the source of the edge that
is being inserted. This value depends only on the current state of the data structure, so
our algorithm is truly online. We prove that it has the same complexity as Bender et al.’s
original algorithm, namely O(m ·min(m1/2, n2/3) + n).

6 Informal Complexity Analysis

We now present an informal complexity analysis of Bender et al.’s original algorithm. In this
algorithm, the parameter F is fixed: it remains constant throughout the execution of the
algorithm. Under this hypothesis, the following invariant holds: for every level k except the
highest level, there exist at least F horizontal edges at level k (edges whose endpoints are
both at level k). A proof is given in Appendix A.

From this invariant, one can derive two upper bounds on the number of levels. Let K
denote the number of nonterminal levels. First, the invariant implies m ≥ KF , therefore
K ≤ m/F . Furthermore, for each nonterminal level k, the vertices at level k form a subgraph
with at least F edges, which therefore must have at least

√
F vertices. In other words, at

every nonterminal level, there are at least
√
F vertices. This implies n ≥ K

√
F , therefore

K ≤ n/
√
F .



10 Formal Proof and Analysis of an Incremental Cycle Detection Algorithm

Let us estimate the algorithm’s complexity. Consider a sequence of n vertex creation
and m edge creation operations. The cost of one backward search is O(F ), as it traverses at
most F edges. Because each edge insertion triggers one such search, the total cost of the
backward searches is O(mF ). The forward search traverses an edge if and only if this edge’s
source vertex is promoted to a higher level. Therefore, the cost of a forward search is linear
in the number of edges whose source vertex is thus promoted. Because there are m edges and
because a vertex can be promoted at most K times, the total cost of the forward searches is
O(mK). In summary, the cost of this sequence of operations is O(mF +mK).

By combining this result with the two bounds on K obtained above, one finds that the
complexity of the algorithm is O(m · (F + min(m/F, n/

√
F )). A mathematical analysis

(Appendix A) shows that setting F to ∆, where ∆ is defined as min(m1/2, n2/3), leads to the
asymptotic bound O(m ·min(m1/2, n2/3)). This completes our informal analysis of Bender
et al.’s original algorithm.

In our modified algorithm, in contrast, F is not a constant. Instead, each edge insertion
operation has its own value of F : indeed, we let F stand for L(v), where v is the source
vertex of the edge that is being inserted. We are able to establish the following invariant: for
every level k except the highest level, there exist at least k horizontal edges at level k. This
subsequently allows us to establish a bound on the number of levels: we prove that L(v) is
bounded by a quantity that is asymptotically equivalent to ∆.

7 Implementation

Our OCaml code, shown in Figure 3, relies on auxiliary operations whose implementation
belongs in a lower layer. We do not prescribe how they should be implemented and what
data structures they should rely upon; instead, we provide a specification for each of them,
and prove that our algorithm is correct, regardless of which implementation choices are made.
We provide and verify one concrete implementation, so as to guarantee that our requirements
can be met.

For brevity, we do not give the specifications of these auxiliary operations. Instead, we
list them and briefly describe what they are supposed to do. Each of them is required to
have constant time complexity.

To update the graph, the algorithm requires the ability to create new vertices and new
edges (create_vertex and add_edge). To avoid creating duplicate edges, it must be able to
test the equality of two vertices (vertex_eq).

The backward search requires the ability to efficiently enumerate the horizontal incoming
edges of a vertex (get_incoming). The collection of horizontal incoming edges of a vertex y is
updated during a forward search. It is reset when the level of y is increased (clear_incoming).
An edge is added to it when a horizontal edge from x to y is traversed (add_incoming). The
backward search also requires the ability to generate a fresh mark (new_mark), to mark a
vertex (set_mark), and to test whether a vertex is marked (is_marked). These marks are
consulted also during the forward search.

The forward search requires the ability to efficiently enumerate the outgoing edges of a
vertex (get_outgoing). It also reads and updates the level of certain vertices (get_level,
set_level).

Several choices arise in the implementation of graph search. First, the frontier can be
either implicit, if the search is formulated as a recursive function, or represented as an explicit
data structure. We choose the latter approach, as it lends itself better to the implementation
of an interruptible search. Second, one must choose between an imperative style, where the
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let rec visit_backward g target mark fuel stack =
match stack with
| [] -> VisitBackwardCompleted
| x :: stack ->

let (stack, fuel), interrupted = interruptible_fold (fun y (stack, fuel) ->
if fuel = 0 then Break (stack, -1)
else if vertex_eq y target then Break (stack, fuel)
else if is_marked g y mark then Continue (stack, fuel - 1)
else (set_mark g y mark; Continue (y :: stack, fuel - 1))

) (get_incoming g x) (stack, fuel) in
if interrupted
then if fuel = -1 then VisitBackwardInterrupted else VisitBackwardCyclic
else visit_backward g target mark fuel stack

let backward_search g v w fuel =
let mark = new_mark g in
let v_level = get_level g v in
set_mark g v mark;
match visit_backward g w mark fuel [v] with
| VisitBackwardCyclic -> BackwardCyclic
| VisitBackwardInterrupted -> BackwardForward (v_level + 1, mark)
| VisitBackwardCompleted -> if get_level g w = v_level

then BackwardAcyclic
else BackwardForward (v_level, mark)

let rec visit_forward g new_level mark stack =
match stack with
| [] -> ForwardCompleted
| x :: stack ->

let stack, interrupted = interruptible_fold (fun y stack ->
if is_marked g y mark then Break stack
else

let y_level = get_level g y in
if y_level < new_level then begin

set_level g y new_level;
clear_incoming g y;
add_incoming g y x;
Continue (y :: stack)

end else if y_level = new_level then begin
add_incoming g y x;
Continue stack

end else Continue stack
) (get_outgoing g x) stack in
if interrupted then ForwardCyclic
else visit_forward g new_level mark stack

let forward_search g w new_w_level mark =
clear_incoming g w;
set_level g w new_w_level;
visit_forward g new_w_level mark [w]

let add_edge_or_detect_cycle (g : graph) (v : vertex) (w : vertex) =
let succeed () = add_edge g v w; Ok in
if vertex_eq v w then Cycle
else if get_level g w > get_level g v then succeed ()
else match backward_search g v w (get_level g v) with

| BackwardCyclic -> Cycle
| BackwardAcyclic -> succeed ()
| BackwardForward (new_level, mark) ->

match forward_search g w new_level mark with
| ForwardCyclic -> Cycle
| ForwardCompleted -> succeed ()

Figure 3 OCaml implementation of the verified incremental cycle detection algorithm.
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frontier is represented as a mutable data structure and the code is structured in terms of
“while” loops and “break” and “continue” instructions, and a functional style, where the
frontier is an immutable data structure and the code is organized in terms of tail-recursive
functions or higher-order loop combinators. Because OCaml does not have “break” and
“continue”, we choose the latter style.

The function visit_backward, for instance, can be thought of as two nested loops. The
outer loop is encoded via a tail call to visit_backward itself. This loop runs until the stack
is exhausted or the inner loop is interrupted. The inner loop is implemented via the loop
combinator interruptible_fold, a functional-style encoding of a “for” loop whose body
may choose between interrupting the loop (Break) and continuing (Continue). This inner
loop iterates over the horizontal incoming edges of the vertex x. It is interrupted when a
cycle is detected or when the variable fuel, whose initial value corresponds to F (Section 5),
reaches zero.

The main public entry point of the algorithm is add_edge_or_detect_cycle, whose
specification was presented in Figure 1. The other two public functions, init_graph and
add_vertex, are trivial; they are not shown.

8 Data Structure Invariants

As explained earlier (Section 4), the specification of the algorithm refers to two variables,
IsGraph and ψ, which must be regarded as abstract by a client. Figure 4 gives their formal
definitions. The assertion IsGraph g G captures both the invariants required for functional
correctness and those required for the complexity analysis. It is a conjunction of three
conjuncts, which we describe in turn.

The conjunct IsRawGraph g GLM I asserts that there is a data structure at address g in
memory, claims the unique ownership of this data structure, and summarizes the information
that is recorded in this structure. The parameters G,L,M, I together form a logical model of
this data structure: G is a mathematical graph; L is a map of vertices to integer levels; M is
a map of vertices to integer marks; and I is a map of vertices to sets of vertices, describing
horizontal incoming edges. The parameters L, M and I are existentially quantified in the
definition of IsGraph, indicating that they are internal data whose existence is not exposed
to the user.

The second conjunct, [Inv G L I], is a pure proposition that relates the graph G with
the maps L and I. Its definition appears next in Figure 4. Anticipating on the fact
that we sometimes need a relaxed invariant, we actually define a more general predicate
InvExcept E G L I, where E is a set of “exceptions”, that is, a set of vertices where certain
properties are allowed not to hold. Instantiating E with the empty set ∅ yields Inv G L I.

The proposition InvExcept E G L I is a conjunction of five properties. The first four
capture functional correctness invariants: the graph G is acyclic, every vertex has positive
level, L forms a pseudo-topological numbering of G, and the sets of horizontal incoming
edges represented by I are accurate with respect to G and L. The last property plays a
crucial role in the complexity analysis (Section 6). It asserts that “every vertex has enough
coaccessible edges at the previous level”: for every vertex x at level k + 1, there must be at
least k horizontal edges at level k from which x is accessible. The vertices in the set E may
disobey this property, which is temporarily broken during a forward search.

The last conjunct in the definition of IsGraph is $φ(G,L). This is a potential [42], a
number of credits that have been received from the user (through calls to add_vertex and
add_edge_or_detect_cycle) and not yet spent. φ(G,L) is defined as C · (net G L). The
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IsGraph g G := ∃LM I. IsRawGraph g GLM I ∗ [Inv G L I] ∗ $φ(G,L)

Inv G L I := InvExcept ∅ G L I

InvExcept E G L I :=
acyclicity: ∀x. x 6−→ +

G x

positive levels: ∀x. L(x) ≥ 1
pseudo-topological numbering: ∀x y. x −→G y =⇒ L(x) ≤ L(y)
horizontal incoming edges: ∀x y. x ∈ I(y) ⇐⇒ x −→G y ∧ L(x) = L(y)
replete levels: ∀x. x ∈ E ∨ enoughEdgesBelow G L x

enoughEdgesBelow G L x := |coaccEdgesAtLevel G L k x| ≥ k where k = L(x)− 1

coaccEdgesAtLevel G L k x := { (y, z) | y −→G z −→∗G x ∧ L(y) = L(z) = k }

φ(G,L) := C · (net G L)

net G L := received m n− spent G L

}
where m = |edges G|
and n = |vertices G|

spent G L :=
∑

(u,v)∈ edges G

L(u)

received m n := m · (maxLevel m n+ 1)

maxLevel m n := min(d(2m)1/2e, b( 3
2n)2/3c) + 1

ψ(m,n) := C ′ · (received m n+m+ n)

Figure 4 Definitions of IsGraph and ψ, with auxiliary definitions.

constant C is derived from the code; its exact value is in principle known, but irrelevant, so
we refer to it only by name. The quantity “net G L” is defined as the difference between
“received m n”, an amount that has been received, and “spent G L”, an amount that has been
spent. “net G L” can also be understood as a sum over all edges of a per-edge amount, which
for each edge (u, v) is “maxLevel m n−L(u)”. This is a difference between “maxLevel m n”,
which one can prove is an upper bound on the current level of every vertex, and L(u), the
current level of the vertex u. This difference can be intuitively understood as the number of
times the edge (u, v) might be traversed in the future by a forward search, due to a promotion
of its source vertex u.

We have reviewed the three conjuncts that form IsGraph g G. There remains to define ψ,
which also appears in the public specification (Figure 1). Recall that ψ(m,n) denotes the
number of credits that we request from the user during a sequence of m edge additions and
n vertex additions. Up to another known-but-irrelevant constant factor C ′, it is defined as
“m+ n+ received m n”, that is, a constant amount per operation plus a sufficient amount to
justify that φ(m,n) credits are at hand, as claimed by the invariant IsGraph g G. It is easy
to check, by inspection of the last few definitions in Figure 4, that Complexity is satisfied,
that is, ψ(m,n) is O(m ·min(m1/2, n2/3) + n).

The public function add_edge_or_detect_cycle expects a graph g and two vertices v
and w. Its public specification has been presented earlier (Figure 1). The top part of Figure 5
shows the same specification, where IsGraph (01) and ψ (02) have been unfolded. This shows
that we receive time credits from two different sources: the potential of the data structure,
on the one hand, and the credits supplied by the user for this operation, on the other hand.
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∀g GLM I v w. let m := |edges G| and n := |vertices G| in
v, w ∈ vertices G ∧ (v, w) 6∈ edges G =⇒{

IsRawGraph g GLM I ∗ [Inv G L I] ∗ $φ(G,L) ∗ (01)
$(C ′ · (received (m+ 1) n− received m n+ 1)) (02)

}
(add_edge_or_detect_cycle g v w)
λres. match res with
| Ok⇒ let G′ := G+ (v, w) in ∃L′M ′ I ′.

IsRawGraph g G′ L′M ′ I ′ ∗ [Inv G′ L′ I ′] ∗ $φ(G′, L′)
| Cycle⇒ [w −→∗G v]


Figure 5 Specifications for edge creation, after unfolding of the representation predicate.

9 Specifications for the Algorithm’s Main Functions

The specifications of the two search functions, backward_search and forward_search,
appear in Figure 6. They capture the algorithm’s key internal invariants and spell out exactly
what each search achieves and how its cost is accounted for.

The function backward_search expects a nonnegative integer fuel, which represents the
maximum number of edges that the backward search is allowed to process. In addition, it
expects a graph g and two distinct vertices v and w which must satisfy L(w) ≤ L(v). (If
that is not the case, an edge from v to w can be inserted immediately.) The graph must
be in a valid state (03). The specification requires A · fuel +B credits to be provided (04),
for some known-but-irrelevant constants A and B. Indeed, the cost of a backward search is
linear in the number of edges that are processed, therefore linear in fuel.

This function returns either BackwardCyclic, BackwardAcyclic, or a value of the form
BackwardForward(k,mark). The first line in the postcondition (05) asserts that the graph
remains valid and changes only in that some marks are updated: M changes to M ′.

The remainder of the postcondition depends on the function’s return value, res. If it is
BackwardCyclic, then there exists a path in G from w to v (06). If it is BackwardAcyclic,
then v and w are at the same level and there is no path from w to v (07). In this case, no
forward search is needed. If it is of the form BackwardForward(k,mark), then a forward
search is required.

In the latter case, the integer k is the level to which the vertex w and its descendants
should be promoted during the subsequent forward search. The value mark is the mark that
was used by this backward search; the subsequent forward search uses this mark to recognize
vertices reached by the backward search. The postcondition asserts that the vertex v is
marked, whereas w is not (08), since it has not been reached. Moreover, every marked vertex
lies at the same level as v and is an ancestor of v (09). Finally, one of the following two cases
holds. In the first case, w must be promoted to the level of v and currently lies below the
level of v (10) and the backward search is complete, that is, every ancestor of v that lies at
the level of v is marked (11). In the second case, w must be promoted to level L(v) + 1 and
there exist at least fuel horizontal edges at the level of v from which v can be reached (12).

The function forward_search expects the graph g, the target vertex w, the level k to
which w and its descendants should be promoted, and the mark mark used by the backward
search. The vertex w must be at a level less than k and must be unmarked. The graph
must be in a valid state (13). The forward search requires a constant amount of credits B′.
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∀fuel g GLM I v w.

fuel ≥ 0 ∧ v, w ∈ vertices G ∧ v 6= w ∧ L(w) ≤ L(v) =⇒{
IsRawGraph g GLM I ∗ [Inv G L I] ∗ (03)
$(A · fuel +B) (04)

}
(backward_search g v w fuel)

λres. ∃M ′.
IsRawGraph g GLM ′ I ∗ [Inv G L I] ∗ (05)
[match res with
| BackwardCyclic⇒ w −→∗G v (06)
| BackwardAcyclic⇒ L(v) = L(w) ∧ w 6−→ ∗

Gv (07)
| BackwardForward(k,mark)⇒
M ′ v = mark ∧ M ′ w 6= mark ∧ (08)
(∀x.M ′ x = mark =⇒ L(x) = L(v) ∧ x −→∗G v) ∧ (09)
( (k = L(v) ∧ L(w) < L(v) ∧ (10)

∀x. L(x) = L(v) ∧ x −→∗G v =⇒ M ′ x = mark) (11)
∨ (k = L(v) + 1 ∧ fuel ≤ |coaccEdgesAtLevel G L (L(v)) v|))] (12)



∀g GLM I w k mark.
w ∈ vertices G ∧ L(w) < k ∧ M w 6= mark =⇒{

IsRawGraph g GLM I ∗ [Inv G L I] ∗ (13)
$(B′ + φ(G,L)) (14)

}
(forward_search g w k mark)

λres. ∃L′ I ′.
IsRawGraph g GL′M I ′ ∗ (15)
[L′(w) = k ∧ (∀x. L′(x) = L(x) ∨ w −→∗G x)] ∗ (16)
match res with
| ForwardCyclic⇒ [∃x.M x = mark ∧ w −→∗G x] (17)
| ForwardCompleted⇒

$φ(G,L′) ∗ (18)
[(∀x y. L(x) < k ∧ w −→∗G x −→G y =⇒ M y 6= mark) ∧ (19)
InvExcept {x | w −→∗G x ∧ L′(x) = k} G L′ I ′] (20)


Figure 6 Specifications for the main two auxiliary functions.

Furthermore, it requires access to the potential $φ(G,L), which is used to pay for edge
processing costs.

This function returns either ForwardCyclic or ForwardCompleted. It affects the low-level
graph data structure by updating certain levels and certain sets of horizontal incoming edges:
L and I are changed to L′ and I ′ (15). The vertex w is promoted to level k, and a vertex x
can be promoted only if it is a descendant of w (16).

If the return value is ForwardCyclic, then, according to the postcondition, there exists a
vertex x that is accessible from w and that has been marked by the backward search (17).
This implies that there is a path from w through x to v. Thus, adding an edge from v to w
would create a cycle. In this case, the data structure invariant is lost.
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If the return value is ForwardCompleted, then, according to the postcondition, φ(G,L′)
credits are returned (18). This is precisely the potential of the data structure in its new
state. Furthermore, two logical propositions hold. First (19), the forward search has not
encountered a marked vertex: for every edge (x, y) that is accessible from w, where x is
at level less than k, the vertex y is unmarked. (This implies that there is no path from w

to v.) Second (20), the invariant Inv G L′ I ′ is satisfied except for the fact that the property
of “replete levels” (Figure 4) may be violated at descendants of w whose level is now k.
Fortunately, this proposition (20), combined with a few other facts that are known to hold at
the end of the forward search, implies Inv G′ L′ I ′, where G′ stands for G+ (v, w). In other
words, at the end of the forward search, all levels and all sets of horizontal incoming edges
are consistent with the mathematical graph G′, where the edge (v, w) exists. Thus, after
this edge is effectively created in memory by the call add_edge g v w, all is well: we have
both IsRawGraph g G′ L′M ′ I ′ and Inv G′ L′ I ′, so add_edge_or_detect_cycle satisfies
its postcondition, under the form shown in Figure 6.

10 Related Work

Neither interactive program verification nor Separation Logic with Time Credits are new
(Section 1). Outside the realm of Separation Logic, several researchers present machine-
checked complexity analyses, carried out in interactive proof assistants. Van der Weegen
and McKinna [46] study the average-case complexity of Quicksort, represented in Coq as a
monadic program. The monad is used to introduce both nondeterminism and comparison-
counting. Danielsson [11] implements a Thunk monad in Agda and uses it to reason about the
amortized complexity of data structures that involve delayed computation and memoization.
McCarthy et al. [30] present a monad that allows the time complexity of a Coq computation
to be expressed in its type. Nipkow [33] proposes machine-checked amortized complexity
analyses of several data structures in Isabelle/HOL. The code is manually transformed into
a cost function.

Several mostly-automated program verification systems can verify complexity bounds.
Madhavan et al. [29] present such a system, which can deal with programs that involve
memoization, and is able to infer some of the constants that appear in user-supplied complexity
bounds. Srikanth et al. [40] propose an automated verifier for user-supplied complexity
bounds that involve polynomials, exponentials, and logarithms. When a bound is not met, a
counter-example can be produced. Such automated tools are inherently limited in the scope
of programs that they can handle. For instance, the algorithm considered in the present
paper appears to be far beyond reach of any of these fully automated tools.

There is also a vast body of work on fully-automated inference of complexity bounds,
beginning with Wegbreit [47] and continuing with more recent papers and tools [15, 14, 2,
13, 20]. Carbonneaux et al.’s analysis produces certificates whose validity can be checked by
Coq [5]. It is possible in principle to express these certificates as derivations in Separation
Logic with Time Credits. This opens the door to provably-safe combinations of automated
and interactive tools.

Finally, there is a rich literature on static and dynamic analyses that aim at detecting
performance anomalies [34, 31, 21, 28, 45].

Early work on the verification of garbage collection algorithms includes, in some form,
the verification of a graph traversal. For example, Russinoff [38] uses the Boyer-Moore
theorem prover to verify Ben Ari’s incremental garbage collector, which employs a two-color
scheme. In more recent work, specifically focused on the verification of graph algorithms,
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Lammich [25], Pottier [36], and Chen et al. [10, 9] verify various algorithms for finding the
strongly connected components of a directed graph. In particular, Chen et al. [9] repeat a
single proof using Why3, Coq and Isabelle. None of these works include a verification of
asymptotic complexity.

11 Conclusion

In this paper, we have used a powerful program logic to simultaneously verify the correct-
ness and complexity of an actual implementation of a state-of-the-art incremental cycle
detection algorithm. Although neither interactive program verification nor Separation
Logic with Time Credits are new, there are still relatively few examples of applying this
simultaneous-verification approach to nontrivial algorithms or data structures. We hope
we have demonstrated that this approach is indeed viable, and can be applied to a wide
range of algorithms, including ones that involve mutable state, dynamic memory allocation,
higher-order functions, and amortization.

As a technical contribution, whereas all previous works use credits in N, we use credits
in Z and allow negative credits to exist temporarily. We explain in Section 3 why this is safe
and convenient.

Following Guéneau et al. [17], our public specification exposes an asymptotic complexity
bound: no literal constants appear in it. We remark, however, that it is often difficult to use
something that resembles the O notation in specifications and proofs. Indeed, in its simplest
form, a use of this notation in a mathematical statement S[O(g)] can be understood as an
occurrence of a variable f that is existentially quantified at the beginning of the statement:
∃f. (f � g) ∧ S[f ]. An example of such a statement was given earlier (Section 2). Here, f
denotes an unknown function, which is dominated by the function g. The definition of the
domination relation � involves further quantifiers [17]. In the analysis of a complex algorithm
or data structure, however, it is often the case that an existential quantifier must be hoisted
very high, so that its scope encompasses not just a single statement, but possibly a group
of definitions, statements, and proofs. The present paper shows several instances of this
phenomenon. In the public specification (Figure 1), the cost function ψ must be existentially
quantified at the outermost level. In the definition of the data structure invariant (Figure 4)
and in the proofs that involve this invariant, several constants appear, such as C and C ′,
which must be defined beforehand. Thus, even if one could formally use S[O(g)] as syntactic
sugar for ∃f. (f � g) ∧ S[f ], we fear that one might not be able to use this sugar very often,
because a lot of mathematical work is carried out under the existential quantifier, in a context
where f must be explicitly referred to by name. That said, novel ways of understanding the
O notation may permit further progress; Affeldt et al. [1] make interesting steps in such a
direction.

In future work, we would like to verify the algorithm that is used in the kernel of Coq to
check the satisfiability of universe constraints. These are conjunctions of strict and non-strict
ordering constraints, x < y and x ≤ y. This requires an incremental cycle detection algorithm
that maintains strong components. Bender et al. [4, §5] present such an algorithm. It relies
on a Union-Find data structure, whose correctness and complexity have been previously
verified [8]. It is therefore tempting to re-use as much verified code as we can, without
modification.
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A Asymptotic Analysis of Bender et al.’s Algorithm

This appendix offers informal proof sketches about Bender et al.’s algorithm. These results
are not new. They are written under the assumption that the parameter F is a constant: its
value does not change while the algorithm runs.

The proof sketch for Lemma 1 has a temporal aspect: it refers to the state of the data
structure at various points in time. Our formal proofs, on the other hand, are carried out in
Separation Logic, which implies that they are based purely on assertions that describe the
current state at each program point.

Let us say that an edge is at level k iff both of its endpoints are at level k. In Bender et
al.’s algorithm, the following key invariant holds:

I Lemma 1 (Bound on the number of levels). For every level k except the highest level, there
exist at least F edges at level k.

Proof. We consider a vertex v at level k + 1, and show that there exist F edges at level k.
Because there is a vertex v at level k + 1, there must exist a vertex v′ at level k + 1 that has
no predecessor at this level. The backward search that promoted v′ to this level must have
traversed F edges that were at level k at that time. Thus, it suffices to show that, at the
present time, these edges are still at level k. By way of contradiction, suppose that the target
vertex v′′ of one of these edges is promoted to some level k′ that is greater than k. (If the
source vertex of this edge is promoted, then its target vertex is promoted as well.) Because
v′′ is an ancestor of v′, the vertex v′ is necessarily also promoted to level k′ during the same
forward search. But v′ is now at level k + 1, and the level of a vertex never decreases, so k′
must be equal to k+ 1. There follows that v′ has an ancestor v′′ at level k+ 1, contradicting
the assumption that v′ has no predecessor at its level. J

Suppose we are interested in analyzing the cost of a sequence of n vertex creation and m
edge creation operations, starting with an empty graph. Let ∆ stand for min(m1/2, n2/3).
Then, setting F to ∆ yields the desired asymptotic complexity bound:

I Lemma 2 (Asymptotic complexity). Suppose F is ∆. Then, a sequence of n vertex creation
and m edge creation operations costs O(m ·min(m1/2, n2/3)).

Proof. We have established in Section 6 that the algorithm has time complexity:

O(m · (F + min(m/F, F + n/
√
F ))

Our goal is to establish that, when F is ∆, this bound is equivalent to O(m∆). To that end, it
suffices to show that min(m/∆,∆ + n/

√
∆) is O(∆). Let V stand for min(m∆−1, n∆−1/2)),

and let us show that V is O(∆). Recall that ∆ is defined as min(m1/2, n2/3). We distinguish
two cases.
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First, assume m1/2 ≤ n2/3. Then, ∆ = m1/2 and V = min(m1/2, nm−1/4). The left-hand
side of this minimum is smaller, because m1/2 ≤ nm−1/4 iff m3/4 ≤ n iff m1/2 ≤ n2/3. Thus,
V = m1/2 = ∆.

Second, assume m1/2 ≥ n2/3. Then, ∆ = n2/3 and V = min(mn−2/3, n2/3). The right-
hand side of this minimum is smaller, because mn−2/3 ≥ n2/3 iff m ≥ n4/3 iff m1/2 ≥ n2/3.
Thus, V = n2/3 = ∆. J

The above proof sketch may appear to “work by magic”. How can one guess an appropriate
setting of F? The following discussion provides some insight.

I Lemma 3 (Selecting an optimal value of ∆). Setting the parameter F to ∆ leads to the
best asymptotic complexity bound for Bender et al.’s algorithm.

Proof. Let f(m,n, F ) denote the quantity F + min(m/F, F + n/
√
F ) which appears in the

asymptotic time complexity of Bender et al.’s algorithm (Section 6). We are seeking an
optimal setting for the constant F , expressed in terms of the final values of m and n. Thus,
F is technically a function of m and n. When F is presented as a function, the function f
may be defined as follows:

f1(m,n, F ) = F (m,n) +m · F−1(m,n)
f2(m,n, F ) = F (m,n) + n · F−1/2(m,n)
f(m,n, F ) = min(f1(m,n, F ), f2(m,n, F ))

Our goal is to find a function F (m,n) such that λ(m,n). f(m,n, F (m,n)) is a function
minimal with respect to the domination relation between functions over Z× Z.

For fixed values of m and n, the value of F (m,n) is a constant. Consider the function
g1(δ) = δ + m · δ−1 and the function g2(δ) = δ + n · δ−1/2. They are defined in such
a way that f1(m,n, F ) = g1(F (m,n)), and f2(m,n, F ) = g2(F (m,n)), and f(m,n, F ) =
min(g1(F (m,n)), g2(F (m,n))), for the values of m and n considered.

The functions g1 and g2 are convex, and thus each of them admits a unique mini-
mum. Let δ1 be the argument that minimizes g1 and δ2 the argument that minimizes g2.
The value of F (m,n) that we are seeking for is the value that minimizes the expression
min(g1(F (m,n)), g2(F (m,n))), so it either δ1 or δ2, depending on the comparison between
g1(δ1) and g2(δ2).

The values of δ1 and δ2 are the input values that cancel the derivatives of g1 and g2
(derivatives with respect to δ). On the one hand, the derivative of g1 is 1 −mδ−2. This
value is zero when δ2 = m. Thus, δ1 is Θ(m1/2). On the other hand, the derivative of g2 is
1− 1

2nδ
−3/2. This value is zero when δ3/2 = 1

2n. Thus, δ2 is Θ(n2/3).
Let us evaluate the two functions g1 and g2 at their minimum. First, g1(δ1) is Θ(m1/2 +

mm−1/2), thus is Θ(m1/2). Second, g2(δ2) is Θ(n2/3 + nn−1/3), thus is Θ(n2/3).
As explained earlier, for the values ofm and n considered, the minimum value of f(m,n, F )

is equal to either g1(δ1) or g2(δ2). Thus, this minimum value is Θ(min(m1/2, n2/3)). To
reach this minimum value, F (m,n) should be defined as: Θ(if m1/2 ≤ n2/3 then δ1 else δ2).
Interestingly, this expression can be reformulated as Θ(if m1/2 ≤ n2/3 then m1/2 else n2/3),
which simplifies to: Θ(min(m1/2, n2/3)).

In conclusion, setting F (m,n) to Θ(min(m1/2, n2/3)) leads to the minimal asymptotic
value of f(m,n, F ), hence to the minimal value of m · f(m,n, F ), which captures the time
complexity of Bender et al.’s algorithm for the final values m, n, and for the choice of the
parameter F , where F itself depends on m and n. J
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