
Interactive Source-to-Source Optimizations
Validated using Static Resource Analysis

Guillaume Bertholon
Arthur Charguéraud
Thomas Kœhler
Begatim Bytyqi
Damien Rouhling

Inria & Université de Strasbourg, CNRS, ICube
Strasbourg, France

Abstract
Developments in hardware have delivered formidable com-
puting power. Yet, the increased hardware complexity has
made it a real challenge to develop software that exploits the
hardware to its full potential. Numerous approaches have
been explored to help programmers turn naive code into
high-performance code, finely tuned for the targeted hard-
ware. However, these approaches have inherent limitations,
and it remains common practice for programmers seeking
maximal performance to follow the tedious and error-prone
route of writing optimized code by hand.
This paper presents OptiTrust, an interactive source-to-

source optimization framework that operates on general-
purpose C code. The programmer develops a script describ-
ing a series of code transformations. The framework provides
continuous feedback in the form of human-readable diff s
over conventional C code. OptiTrust supports advanced code
transformations, including transformations exploited by the
state-of-the-art DSL tools Halide and TVM, and transfor-
mations beyond the reach of existing tools. OptiTrust also
supports user-defined transformations, as well as defining
complex transformations by composition of simpler trans-
formations. Crucially, to check the validity of code trans-
formations, OptiTrust leverages a static resource analysis in
a simplified form of Separation Logic. Starting from user-
provided annotations on functions and loops, our analysis
deduces precise resource usage throughout the code.

CCS Concepts: • Software and its engineering→ Soft-
ware performance;Development frameworks and envi-
ronments; • Theory of computation→ Separation logic.

Keywords: High performance code, Source-to-source opti-
mization, Separation logic

ACM Reference Format:
Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Be-
gatim Bytyqi, and Damien Rouhling. 2024. Interactive Source-to-
Source Optimizations Validated using Static Resource Analysis.

SOAP ’24, June 25, 2024, Copenhagen, Denmark
2024. ACM ISBN 979-8-4007-0621-9/24/06
https://doi.org/10.1145/3652588.3663320

In Proceedings of the 13th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis (SOAP ’24), June 25,
2024, Copenhagen, Denmark. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3652588.3663320

1 Introduction
1.1 Motivation
Performance matters in numerous fields of computer science,
and in particular in applications frommachine learning, com-
puter graphics, and numerical simulation. Massive speedups
can be achieved by fine-tuning the code to best exploit the
available hardware [15]. Between a naive implementation
and an optimized implementation, it is common to see a
speedup of the order of 50×—on a single core. For many
applications, the code can then be accelerated further by one
or two orders of magnitude by refining the code to exploit
multicore parallelism or GPUs.
Yet, producing high performance code is hard. Over the

past decades, nontrivial mechanisms with subtle interac-
tions were integrated into hardware architectures. Reason-
ing about performance requires reasoning about the effects
of multiple levels of caches, the limitations of memory band-
width, the intricate rules of atomic operations, and the diver-
sity of vector instructions (SIMD). These aspects and their
interactions make it challenging to build cost models. For
example, the cost of a memory access can range from one
CPU cycle to hundreds of CPU cycles, depending on whether
the corresponding data is already in cache. In the general
case, accurately modeling cache behavior requires a deep
understanding of the algorithm and hardware at play.

Accurately predicting runtime behavior is challenging for
expert programmers, and appears beyond the capabilities of
automated tools. Therefore, compilers struggle to navigate
the exponentially large search space of all possible code
candidates [24], resorting to best effort heuristics, and often
failing to produce competitive code [3].
Today, it remains common practice in industry for pro-

grammers to write optimized code by hand [1, 9]. However,
manual code optimization is unsatisfactory for at least three
reasons. First, manually implementing optimized code is

https://orcid.org/0000-0001-7000-382X
https://orcid.org/0000-0001-7764-4507
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5556-3634
https://orcid.org/0009-0007-9279-4766
https://doi.org/10.1145/3652588.3663320
https://doi.org/10.1145/3652588.3663320


SOAP ’24, June 25, 2024, Copenhagen, Denmark Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

time-consuming. Second, the optimized code is hard to main-
tain through hardware and software evolutions. Third, the
rewriting process is error-prone: not only every manual code
edition might introduce a bug, but the code complexity also
increases, especially when introducing parallelism. These
three factors are exacerbated by the fact that optimizations
typically make code size grow by an order of magnitude
(for example, the optimized code for our following matrix
multiplication case study is 7× bigger).
In summary, neither fully automatic nor fully manual

approaches are satisfying for generating high performance
code. Both machine automation and human insight are need-
ed in the optimization process.

1.2 Contribution
This paper introduces OptiTrust, the first interactive opti-
mization framework that operates on general-purpose C
code and that supports and validates state-of-the-art opti-
mizations. OptiTrust is open-source and available at the URL:
https://github.com/charguer/optitrust.

In OptiTrust, the user starts from an unoptimized C code,
and develops a transformation script describing a series of
optimization steps. Each step consists of an invocation of a
specific transformation at specified targets. OptiTrust pro-
vides an expressive target mechanism for describing, in a
concise and robust manner, one or several code locations.
On any step of the transformation script, the user can press
a key shortcut to view the diff associated with that step, in
the form of a comparison between two human-readable C
programs. Concretely, a transformation script consists of an
OCaml program linked against the OptiTrust library.

To ensure that the user applies only semantic-preserving
transformations, OptiTrust performs validity checks that
leverage our static resource analysis, which concretely takes
the form of a type checking algorithm, in a type system
featuring linear resources. This type system may be thought
of as a variant of the Rust type system, or as a scaled down
version of Separation Logic [20]. Our resource-based system
aims to be similar in spirit to RefinedC [22], a Separation
Logic-based type system for C code, even though we have
not implemented all the features of RefinedC yet.

For type-checking resources, functions and loops need to
be equipped with contracts describing their resource usage.
These contracts may be inserted either directly as no-op
annotations in the C source code, or they may be inserted
by dedicated commands as part of the transformation script.
OptiTrust is able to automatically infer simple loop contracts,
thus not all loops need to be annotated manually. Every
OptiTrust transformation takes care of updating contracts in
order to reflect changes in the code. In other words, a well-
typed program remains well-typed after a transformation.
Currently, OptiTrust only automates the application of

transformations and the checking of their validity, but we

void mm(float* C, float* A, float* B, int m, int n, int p) {

__reads("A ⇝ Matrix2(m, p), B ⇝ Matrix2(p, n)");

__modifies("C ⇝ Matrix2(m, n)");

for (int i = 0; i < m; i++) {

__xmodifies("for j in 0..n → &C[i][j] ⇝ Cell");

for (int j = 0; j < n; j++) {

__xmodifies("&C[i][j] ⇝ Cell");

float sum = 0.0f;

for (int k = 0; k < p; k++)

sum += A[i][k] * B[k][j];

C[i][j] = sum;

}

}

}

void mm1024(float* C, float* A, float* B) {

__reads("A ⇝ Matrix2(1024, 1024), "

"B ⇝ Matrix2(1024, 1024)");

__modifies("C ⇝ Matrix2(1024, 1024)");

mm(C, A, B, 1024, 1024, 1024);

}

Listing 1. Unoptimized matrix multiplication. The function
mm multiplies the matrices A and B and stores the result in C.
The function mm1024 specializes input sizes to 1024. We write
A[i][k] instead of A[MINDEX2(m, p, i, k)], for conciseness.
In the future, we plan to leverage a mechanism for
automatically propagating size information.

also plan to explore future work to guide the user towards
useful optimizations.
Next, we illustrate how OptiTrust works through an ex-

ample optimization script.

2 OptiTrust by Example
In this section we present the features of OptiTrust through
an example: optimizing matrix multiplication. The aim is
to produce similar code as a reference TVM schedule that
was written by an expert targeting Intel CPUs.1 TVM is an
industrial-strength domain-specific compiler for machine
learning.

Annotated Code. We start from the C code presented in
Listing 1: a naive, unoptimized implementation of matrix
multiplication. To use OptiTrust, we annotate the code with
resource contracts, which follow a double-underscore prefix.

The mm function reads amatrix A of size𝑚×𝑝 , reads amatrix
B of size 𝑝 × 𝑛, and modifies a matrix C of size𝑚 × 𝑛. This is
explicitly described by the function contract and its __reads

/__modifies clauses. Each clause mentions a set of resources
separated by “,”. For example, the resource A ⇝ Matrix2(m,

p) specifies that the matrix at address A in memory has size
𝑚 × 𝑝 and gives permission to access this matrix: effectively
the permission over every individual cell of the matrix, that
is: for i in 0..m → for j in 0..p → &A[i][j] ⇝ Cell.
1https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html

https://github.com/charguer/optitrust
https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html


Interactive Source-to-Source Optimizations Validated using Static Resource Analysis SOAP ’24, June 25, 2024, Copenhagen, Denmark

!! Function.inline_def [cFunDef "mm"];

let tile (id, tile_size) = Loop.tile (int tile_size)

˜index:("b" ^ id) ˜bound:TileDivides [cFor id] in

!! List.iter tile [("i", 32); ("j", 32); ("k", 4)];

!! Loop.reorder_at ˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"]

[cPlusEq ()];

!! Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB"

˜indep:["bi"; "i"] [cArrayRead "B"];

!! Matrix.stack_copy ˜var:"sum" ˜copy_var:"s" ˜copy_dims:1

[cFor ˜body:[cPlusEq ()] "k"];

!! Omp.simd [cFor ˜body:[cPlusEq ()] "j"];

!! Omp.parallel_for [cFunBody ""; cStrict; cFor ""];

!! Loop.unroll [cFor ˜body:[cPlusEq ()] "k"];

Listing 2. OptiTrust script for optimizing mm1024.

Each iteration of the loops with index i and j modifies a
separate group of cells from matrix C. Loop contracts con-
tain two kinds of clauses: clauses prefixed by “x” are used to
describe resources exclusive to one iteration, and clauses pre-
fixed by “s” to describe resources shared by all iterations. For
example, in the loop with index j, the clause __xmodifies("&C[

i][j] ⇝ Cell") indicates that only iteration j can modify the
j-th cell of the i-th row of thematrix C. By contrast, the clause
__smodifies("for j in 0..n → &C[i][j] ⇝ Cell") would have
indicated that all loop iterations can modify the n cells of
the i-th row of the matrix C. Similarly, __xreads("&A[i][j] ⇝
Cell") indicates that the j-th iteration is the only one that
reads the j-th cell of i-th row of the matrix A, and __sreads("

A ⇝ Matrix2(m, p)") indicates that every iteration may read
any of the m × p cells of the matrix A. By default, resources are
shared by all iterations, so in this code the following clause
is inferred for the three loops: __sreads("A ⇝ Matrix2(m, p),

B ⇝ Matrix2(p, n)").

Transformation Script. To apply optimizations, wewrite
an OptiTrust script in OCaml, as shown in Listing 2. For the
reader not familiar with OCaml, f x y denote the call of f
on the arguments x and y; the symbol ˜ is used to provide
optional (or named) arguments; [x; y; z] denotes a list;
(x, y, z) denotes a tuple; s1 ^ s2 denotes a string concate-
nation; and let f x = e1 in e2 introduces a local function
f. The transformation script calls a series of transformations
that are functions taking various arguments, including a
target as last argument.
The optimizations applied by this script improve data lo-

cality, parallelism, and specialize the matrix sizes. The script
consists of 8 transformation steps, developed interactively:
with the cursor on a line starting with !!, we can press (e.g.)
“F6” in the VSCode editor to visualize the diff associated with
the transformation on that line. All intermediate versions of
the code consist of human-readable, executable C code. The
!! operator is used purely to enable interactivity and early

termination. Additionally, a complete transformation report
can be generated and explored.2

Targets. As mentioned earlier, transformations take tar-
gets as parameters, that describe code locations. A target
consists of a list of constraints (prefixed by “c”) that is sat-
isfied by code paths that go through nodes satisfying each
constraint, in the given order. For example, cFunDef "mm" re-
quires visiting a function definition with the name "mm", and
cFor id requires visiting a for loop over an index with the
name id. Targets may also include special modifiers (the ones
that make a target relative are prefixed by “t”). For example,
tBefore allows targeting the interstice before an instruction.
As another example, cStrict controls the depth: [cFunBody "

"; cStrict; cFor ""] targets for loops over any index name
that appear immediately within a function body with any
name, as opposed to being nested within other constructs.
Targets may also be given as arguments to constraints, for
example, cFor ˜body:[cPlusEq ()] "k" requires visiting a
for loop over an index with the name "k", whose body also
contains a += operation.

Transformations. The script from Listing 2 calls func-
tions from the OptiTrust library called transformations. We
use Function.inline_def to inline the definition of mm into
the mm1024 function that specializes𝑚 = 𝑛 = 𝑝 = 1024. We
use Loop.tile, Loop.reorder_at and Loop.hoist_expr to ap-
ply loop transformations improving data locality and expos-
ing new dimensions for parallelization. We are free to use
any OCaml feature, here defining the local tile function to
iteratively apply it over a list: tiling the loops over i and j by
32, and the loop over k by 4 to create outer loops with indices
bi, bj, and bk. Loop.hoist_expr creates a new temporary ma-
trix with name pB to store values of matrix B using a better
layout, something that actually requires manually chang-
ing the reference code (the algorithm) in a tool like TVM.
While the last target argument locates which expression to
hoist, the˜dest target argument additionally describes where
to hoist it. We locally promote an array to the stack using
Matrix.stack_copy, introducing efficient memcpy operations,
and allowing for the use of SIMD vector registers. We use
simd and parallel_for to add OpenMP pragmas for multi-
threading and vectorizing a number of the newly created
loops. Finally, we unroll the loop over k to help the down-
stream C compiler recognize instruction-level parallelism.

Combined Transformations. As witnessed by the de-
tailed report generated by OptiTrust2, our relatively con-
cise optimization script for matrix multiplication actually
involves a fair number of basic transformation steps hap-
pening under the hood. For example, Loop.reorder_at is a
combined transformation that takes as argument a specific
instruction, and takes a description of how we would like to

2https://files.inria.fr/optitrust/soap24/matmul.html

https://files.inria.fr/optitrust/soap24/matmul.html


SOAP ’24, June 25, 2024, Copenhagen, Denmark Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

for 𝛾 𝑖 in 𝑟𝑖 {
𝑡1;Δ1

Γ2 𝑡2;Δ2

}

↦−→

for 𝛾1 𝑖 in 𝑟𝑖 {
𝑡1;

}
for 𝛾2 𝑖 in 𝑟𝑖 {
𝑡2;

}

correct if:


𝑖 fresh in 𝛾 .shrd
𝛾 .shrd.modifies ∩ notRO(Δ1) ∩ Δ2 = ∅
𝛾 .shrd.modifies ∩ notRO(Δ2) ∩ Δ1 = ∅

annotations produced on the right-hand-side:

𝛾1 ≡


loop.vars ≡ 𝛾 .loop.vars

shrd ≡ 𝛾 .shrd ∩ Δ1
excl.pre ≡ 𝛾 .excl.pre

excl.post ≡ 𝑅

𝛾2 ≡


loop.vars ≡ 𝛾 .loop.vars

shrd ≡ 𝛾 .shrd ∩ Δ2
excl.pre ≡ 𝑅

excl.post ≡ 𝛾 .excl.post

𝑅 ≡ cleanup(Γ2 − 𝛾 .shrd)

Figure 1. Loop.fission transformation and its validation.

order the loops around it. The transformation is defined re-
cursively, “bringing down” the desired loops, from innermost
to outermost. The call to reorder_at in our script involves 4
loop swaps, 6 loop fissions, and 2 hoist operations. In partic-
ular, the hoist operations result in turning the sum variable
local to the inner loop into a 2D-array of values declared in
an outer loop. The loop fissions isolate the initialization and
the reads into this 2D-array into separate loop nests.

Typing Algorithm. While running the transformation
script, every intermediate code is typechecked with our re-
source type system. Internally, function contract clauses such
as __reads and __modifies that appear in the initial code are
desugared into lower-level pre- and post- conditions. For
linear resources, preconditions consume resources whereas
postconditions produce resources. In this low-level represen-
tation, following standard separation logic, read-only per-
missions are encoded using fractions [6, 14]. Loop contracts
are also desugared, into lower-level loop contracts (written
𝛾 ). Low-level loop contracts separate resources in groups:
𝛾 .shrd.modifies and 𝛾 .shrd.reads describe resources modi-
fied and read by all iterations; 𝛾 .excl.pre and 𝛾 .excl.post de-
scribe resources that are exclusively consumed and produced
by one iteration. Low-level loop contracts also bind logical
variables in𝛾 .loop.vars that the loop abstracts over (typically,
the fraction variables of the read-only permissions).
The code is then typed according to the provided con-

tracts by proceeding top to bottom, in a syntax-directed way
that does not require difficult inferences. The typing context
consists of the resources available at a given program point,

where resources may be fully available, available in read-
only mode (i.e., only a fraction is available) or available in
“uninit” mode. Resources available in uninit mode cannot be
read from before writing to them, which is useful to model
when memory values for a resource are irrelevant.

To type a function body, the typing context is initialized
with the precondition, and the final typing context is checked
to imply the postcondition. Intuitively, the body of a func-
tion is given access to its consumed resources, and must
return access to its produced resources. For every program
point, our typing algorithm not only computes the resources
available as typing contexts (written Γ), but also the local
resource usage (written Δ).

Validity Checks. Leveraging the resource typing infor-
mation, OptiTrust checks that each transformation applied
by the script (Listing 2) preserves the semantics. The validity
of a combined transformation is derived from the validity of
all the basic transformations that it leverages. The validity of
a basic transformation is verified by the OCaml implementa-
tion of that transformation, which is responsible for check-
ing sufficient conditions under which it preserves semantics.
To ensure that every intermediate code type-checks, each
transformation must also maintain annotations such as those
provided in the initial code (Listing 1). Simple examples are
the Loop.simd and Loop.parallel_for transformations, that
are correct if the annotations on the targeted loop captures
the absence of interference: the 𝛾 .shrd.modifies resource set
of the loop contract 𝛾 is empty.
A more complex example is the validity of Loop.fission,

depicted in Figure 1. The transformation is described on the
internal imperative 𝜆-calculus representation of OptiTrust,
where for loops are simplified to iterate over ranges. Anno-
tations on the left (in green) represent resource information
consumed by the transformation, and annotations on the
right (in orange) represent resource information produced
by the transformation.

Intuitively, loop fission is correct if the resources modified
by 𝑡1 and 𝑡2 do not interfere across iterations. For 𝛾 .excl
resources, there is no interference because each iteration is
independent. For 𝛾 .shrd resources, we check for interference
using Δ1 and Δ2: if 𝑡1 modifies one resource from 𝛾 .shrd,
then 𝑡2 must not use this same resource; symmetrically, if 𝑡2
modifies a resource, then 𝑡1 must not use it. Note, however,
that 𝑡1 and 𝑡2 may both read the same resource.
On top of checking for the correctness condition, the fis-

sion transformation must also synthesize loop contracts for
the new loops, so that the resulting code still type-checks.
For shrd resources, we simply project the subsets of 𝛾 .shrd
resources used by 𝑡1 and 𝑡2. For excl resources, we preserve
the previous pre- and post-conditions, but need to synthesize
a new middle-point (𝑅) corresponding to the iteration-exclu-
sive resources available between 𝑡1 and 𝑡2. 𝑅 is computed by
subtracting the shared resources (𝛾 .shrd) from the resources



Interactive Source-to-Source Optimizations Validated using Static Resource Analysis SOAP ’24, June 25, 2024, Copenhagen, Denmark

float* pB = (float*)malloc(sizeof(float[32][256][4][32]));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {

for (int bk = 0; bk < 256; bk++) {

for (int k = 0; k < 4; k++) {

for (int j = 0; j < 32; j++) {

pB[32768 * bj + 128 * bk + 32 * k + j] =

B[1024 * (4 * bk + k) + 32 * bj + j]; }}}}

#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {

for (int bj = 0; bj < 32; bj++) {

float* sum = (float*)malloc(sizeof(float[32][32]));
for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

sum[32 * i + j] = 0.; }}

for (int bk = 0; bk < 256; bk++) {

for (int i = 0; i < 32; i++) {

float s[32];

memcpy(s, &sum[32 * i], sizeof(float[32]));
#pragma omp simd

for (int j = 0; j < 32; j++) { // this loop is for k = 0

s[j] += A[1024 * (32 * bi + i) + 4 * bk + 0] *

pB[32768 * bj + 128 * bk + 32 * 0 + j]; }

// [...] similar unrolling, not shown, for k = 1, 2, 3

memcpy(&sum[32 * i], s, sizeof(float[32])); }}

for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

C[1024 * (32*bi + i) + 32*bj + j] = sum[32*i + j]; }}

// [...] free instructions, not shown

Listing 3. Optimized C code produced by the OptiTrust
script for mm1024. This code has similar structure and achieves
similar performance as the reference output of TVM.

available between 𝑡1 and 𝑡2 (Γ2), and for technical scoping
reasons, performing a final “cleanup”.

Final Optimized Code. Listing 3 shows the optimized
C code produced by our script. First, we checked that this
output code matches the structural optimizations from the
reference TVM case study. Note that TVM directly targets
LLVM IR, and does not produce easily readable C code.
Second, we checked the performance. We benchmarked

our code against TVM’s code on a 4-core Intel i7-8665U
CPU with AVX2 support. Both codes have similar runtime,
corresponding to a speedup of 150× over the naive code.3

3 Comparison to Related Work
Now that we have seen how OptiTrust works by example,
let us introduce a number of qualitative properties, before
reviewing related tools for semi-automatic code optimiza-
tion and finally explaining why OptiTrust achieves a unique
combination of features.

• Generality: How large is the domain of applicability
of the tool? In particular, is it restricted to a domain-
specific language?

3We obtain a 90th percentile runtime of 9.4ms over 200 benchmark runs, and
compare it to the 90th percentile of the naive code. Besides, the OptiTrust
median runtime is slightly faster than the TVM median runtime.

• Expressiveness: How advanced are the code transfor-
mations supported by the tool? Is it possible to express
state-of-the-art code optimizations?

• Control: How much control over the final code is
given to the user by the tool? In particular, is there a
monolithic code generation stage?

• Feedback: Does the tool provide easily readable inter-
mediate code after each transformation?

• Composability: Is it possible to define transforma-
tions as the composition of existing transformations?
Can transformations be higher-order, i.e., parameter-
ized by other transformations?

• Extensibility of transformations: Does the tool fa-
cilitate defining custom transformations that are not
expressible as the composition of built-in ones?

• Trustworthiness: Does the tool ensure that user-
requested transformations preserve the semantics of
the code? Can it moreover provide mechanized proofs?

3.1 Related Work
Halide [19] is an industrial-strength domain-specific com-
piler for image processing. Halide popularized the idea of
separating an algorithm describing what to compute from a
schedule describing how to optimize the computation. This
separation makes it easy to try different schedules. TVM [8]
is a tool directly inspired by Halide, but tuned for applica-
tions to machine learning. Halide and TVM are inherently
limited to their domain-specific languages. They do not sup-
port higher-order composition of transformations, and are
not extensible [3, 18]. Moreover, understanding their output
is difficult as the applied transformations are not detailed to
the user. Interactive scheduling systems have been proposed
to mitigate this difficulty [13].
Elevate [11] is a functional language for describing op-

timization strategies as composition of simple rewrite rules.
Advanced optimizations from TVM and Halide can be repro-
duced using Elevate. One key benefit is extensibility: adding
rewrite rules is much easier than changing complex and
monolithic compilation passes [18]. Elevate strategies are ap-
plied on programs expressed in a functional array language
named Rise, followed by compilation to imperative code. The
use of a functional array language greatly simplifies rewrit-
ing, however it restricts applicability and makes controlling
imperative aspects difficult (e.g. memory reuse).

Exo [12] is an imperative DSL embedded in Python, geared
towards the development of high-performance libraries for
specialized hardware. It is restricted to static control pro-
grams with linear integer arithmetic. Exo programs can be
optimized by applying a series of source-to-source transfor-
mations. These transformations are described using a Python
script, with simple string-based patterns for targeting code
points. The user can add custom transformations, possibly
defined by composition; higher-order composition seems
possible but has not yet been demonstrated.



SOAP ’24, June 25, 2024, Copenhagen, Denmark Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Table 1. Overview of user-guided tools for high-performance code generation.

Halide/TVM Elevate+Rise Exo Clay/LoopOpt ATL Alpinist Clava+LARA
Generality
Expressiveness
Control
Feedback
Composability
Extensibility
Trustworthiness

Clay [2] is a framework to assist in the optimization of loop
nests that can be described in the polyhedral model [10]. The
polyhedral model only covers a specific class of loop transfor-
mations, with restriction over the code contained in the loop
bodies, however it has proved extremely powerful for opti-
mizing code falling in that fragment. Clay provides a decom-
position of polyhedral optimizations as a sequence of basic
transformations with integer arguments. The correspond-
ing transformation script can then be customized by the
programmer. Clint [26] adds visual manipulation of polyhe-
dral schedules through interactive 2D diagrams. LoopOpt [7]
provides an interactive interface that helps users design opti-
mization sequences (featuring unrolling, tiling, interchange,
and reverse of iteration order) that can be bound in a declar-
ative fashion to loop nests satisfying specific patterns.

ATL [16] is a purely functional array language for express-
ing Halide-style programs. Its particularity is to be embedded
into the Coq proof assistant. ATL programs can be trans-
formed through the application of rewrite rules expressed
as Coq theorems. With this approach, transformations are
inherently accompanied by machine-checked proofs of cor-
rectness. The set of rules includes expressive transformations
beyond the scope of Halide, and can be extended by the user.
Once optimized, ATL programs are then compiled into imper-
ative C code. Like Rise, generality and control are restricted
by the functional array language nature of ATL.
Alpinist [21] is a pragma-based tool for optimizing GPU-

level, array-based code, able to apply basic transformations
such as loop tiling, loop unrolling, data prefetching, matrix
linearization, and kernel fusion. The key characteristic of
Alpinist is that it operates over code formally verified using
the VerCors framework [5]. Concretely, Alpinist transforms
not only the code but also its formal annotations. If Alpinist
were to leverage transformation scripts instead of pragmas,
it might be possible to chain and compose transformations;
yet, this possibility remains to be demonstrated.

Clava [4] is a general-purpose C++ source-to-source anal-
ysis and transformation framework implemented in Java.
The framework has been instantiated mainly for code instru-
mentation purpose and auto-tuning of parameters. Clava can
also be used in conjunction with a DSL called LARA [23] for
optimizing specific programs. LARA allows expressing user-
guided transformations by combining declarative queries

over the AST and imperative invocations of transformations,
with the option to embed JavaScript code. The application
paper on the Pegasus tool [17] illustrates this approach on
loop tiling and interchange operations.
Table 1 summarizes the properties of the existing ap-

proaches, highlighting their diversity. The table is sorted
by increasing generality. For the tools considered, this gener-
ality is negatively correlated with expressiveness, i.e., with
how advanced the supported transformations are. Regard-
ing generality, only Clava supports operating on general C
code, yet provides absolutely no guarantees on semantics
preservation. For each property considered, at least two tools
show strengths on that property (above half score). However,
even if we leave out the ambition of achieving mechanized
proofs, each tool considered shows weaknesses on at least
two properties (half score or less).

3.2 The Unique Features of OptiTrust
When considering the aforementioned criteria and tools,
OptiTrust achieves a unique combination of features.

Generality. OptiTrust is generally applicable to optimiz-
ing C code. The code must parse using Clang, the parser of
LLVM. The fragments of code that the user wishes to alter
must moreover type-check in our resource type system. At
the time of writing, we support only core features of the
C language: sequences, loops, conditionals, functions, local
and global variables, arrays, and structs. There is, however,
no inherent limitation: OptiTrust could presumably be ex-
tended to support nearly all the C language (we do not plan
to handle general goto’s). Our resource type system currently
only allows describing simple shapes of data structures, and
does not yet allow specifying the stored values. That said,
we have been planing to extend our implementation to a
full-featured Separation Logic similar to RefinedC [22]. In
summary, OptiTrust in its current form does not yet demon-
strate full generality, however it has been designed towards
that goal.

Expressiveness. The combination of three ingredients al-
lows OptiTrust’s users to generate their desired optimized
code: (1) the use of a transformation script for describing a se-
quence of transformations; (2) the use of a target mechanism,
allowing to precisely pinpoint where transformations should



Interactive Source-to-Source Optimizations Validated using Static Resource Analysis SOAP ’24, June 25, 2024, Copenhagen, Denmark

be applied; (3) the availability of a catalog of general-purpose
transformations, whose composition enables altering the
code with a lot of flexibility.

Let us summarize the transformations currently supported
in OptiTrust. For instruction-level transformations, we sup-
port: function inlining, constant propagation, instruction re-
ordering, switching between stack and heap allocation, and
basic arithmetic simplifications. For control-flow transforma-
tions, we support: loop interchange, loop tiling, loop fission,
loop fusion, loop-invariant code motion, loop unrolling, loop
deletion and loop splitting. For data layout transformations,
we support: interchange of dimensions of an array, and ar-
ray tiling. There are many more useful transformations for
which we are working out sufficient correctness conditions.

Certain transformations may require nontrivial checks.
For example, array tiling requires the tile size to divide the
array size, and loop splitting requires arithmetic inequalities
to hold. OptiTrust currently only validates simple conditions;
in the future, more complex conditions could be handled
using either SMT solvers or interactive theorem provers.

Control. Transformation scripts in OptiTrust empower
the user with very fine-grained control over how the code
should be transformed. A challenge is to allow for concise
scripts. To that end, OptiTrust provides high-level combined
transformations, effectively recipes for combining the basic
transformations provided by OptiTrust. Section 2 presented
the example of Loop.reorder_at, which attempts, using a
combination of fission, hoist, and swap operations, to create
a reordered loop nest around a specified instruction. Overall,
the use of combined transformations allows for reasonably
concise transformation scripts, with the user’s intention be-
ing described at a relatively high level of abstraction. The
user stays in control and can freely mix the use of concise
abstractions and precise fine-tuning transformations.

Feedback. For each step in the transformation script, Op-
tiTrust delivers feedback in the form of human-readable C
code. The user usually only needs to read the diff against
the previous code. Interestingly, OptiTrust also records a
trace that allows investigating all the substeps triggered by
a combined transformation. This information is critically
useful when the result of a high-level transformation does
not match the user’s intention. Besides, a key feature of
OptiTrust is its fast feedback loop. The production of fast,
human-readable feedback in a system with significant con-
trol is reminiscent of interactive proof assistants, and of the
aforementioned ATL tool [16].

Composability. OptiTrust transformation scripts are ex-
pressed as OCaml programs, and each transformation from
our library consists of an OCaml function. Because OCaml
is a full-featured programming language, OptiTrust users
may define additional transformations at will by combining
existing transformations. User-defined transformations may

query the abstract syntax tree (AST) that describes the C
code, allowing to perform analyses before deciding what
transformations to apply. Furthermore, because OCaml is
a higher-order programming language, transformation can
take other transformations as argument. We use this pro-
gramming pattern for example to customize the arithmetic
simplifications to be performed after certain transformations.

Extensibility. If the user needs a transformation that is
not expressible as a combination of transformations from the
OptiTrust library, a custom transformation can be devised.
Because OptiTrust does not rely on heuristics, adding a new
transformation to OptiTrust does not impact in any way the
behavior of existing scripts. To define relatively simple cus-
tom transformations, OptiTrust provides a term-rewriting
facility based on pattern matching. For more complicated
transformations, one can follow the patterns employed in the
OptiTrust’s library. For all custom transformations, it is the
programmer’s responsibility to work out the criteria under
which applying the transformation preserves the semantics
of the code, and to adapt contracts if necessary in order to
produce well-typed code.

Trustworthiness. Compilers are well-known to be in-
credibly hard to get 100% correct [25]. Like compilers, opti-
mization tools are highly subject to bugs. OptiTrust mitigates
the risks of producing incorrect code in two ways.
Firstly, we instrumented OptiTrust to generate reports

when processing transformation scripts. A report takes the
form of a standalone HTML page, which contains the diff
for every transformation step (and sub-steps). Such a report
can be thoroughly scrutinized by a third-party reviewer.
Secondly, we have organized the OptiTrust code base so

as to isolate the implementation of the basic transforma-
tions, which consists of transformations that directly modify
the AST. Only basic transformations need to be trusted. We
have been careful to systematically minimize the complex-
ity of the interface and of the implementation of our basic
transformations. All other transformations—the combined
transformations—are not part of the trusted computing base.

4 Conclusion
To conclude, OptiTrust is general-purpose, takes as input C
code, supports interactive development of transformation
scripts, and produces at every step readable C code semanti-
cally equivalent to the original code. Our case study demon-
strates that a reasonably concise OptiTrust script achieves
the same performance as an expert-written TVM schedule.

In future work, we plan to integrate support for arbitrary
logical assertions. Following the approach of Alpinist [21],
OptiTrust will transform not only code, but also the expres-
sive logical annotations that decorate the code. Leveraging
on support for logical assertions, we look forward to com-
pleting more challenging case studies.



SOAP ’24, June 25, 2024, Copenhagen, Denmark Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

References
[1] Vasco Amaral, Beatriz Norberto, Miguel Goulão, Marco Aldinucci,

Siegfried Benkner, Andrea Bracciali, Paulo Carreira, Edgars Celms,
Luís Correia, Clemens Grelck, Helen Karatza, Christoph Kessler, Peter
Kilpatrick, Hugo Martiniano, Ilias Mavridis, Sabri Pllana, Ana Respício,
José Simão, Luís Veiga, and Ari Visa. 2020. Programming languages for
data-Intensive HPC applications: A systematic mapping study. Parallel
Comput. 91 (2020), 102584. https://doi.org/10.1016/j.parco.2019.102584

[2] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bas-
toul. 2016. Opening polyhedral compiler’s black box. In Proceedings of
the 2016 International Symposium on Code Generation and Optimization
(Barcelona, Spain) (CGO ’16). Association for Computing Machinery,
New York, NY, USA, 128–138. https://doi.org/10.1145/2854038.2854048

[3] Paul Barham and Michael Isard. 2019. Machine Learning Systems are
Stuck in a Rut. In Proceedings of the Workshop on Hot Topics in Operat-
ing Systems (Bertinoro, Italy) (HotOS ’19). Association for Computing
Machinery, New York, NY, USA, 177–183. https://doi.org/10.1145/
3317550.3321441

[4] João Bispo and João M. P. Cardoso. 2020. Clava: C/C++ source-to-
source compilation using LARA. SoftwareX 12 (2020), 100565. https:
//doi.org/10.1016/J.SOFTX.2020.100565

[5] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn.
2017. The VerCors Tool Set: Verification of Parallel and Concurrent
Software. In Integrated Formal Methods - 13th International Confer-
ence, IFM 2017, Turin, Italy, September 20-22, 2017, Proceedings (Lecture
Notes in Computer Science, Vol. 10510), Nadia Polikarpova and Steve A.
Schneider (Eds.). Springer, 102–110. https://doi.org/10.1007/978-3-
319-66845-1_7

[6] John Boyland. 2003. Checking Interference with Fractional Permis-
sions. In Static Analysis, 10th International Symposium, SAS 2003,
San Diego, CA, USA, June 11-13, 2003, Proceedings (Lecture Notes in
Computer Science, Vol. 2694), Radhia Cousot (Ed.). Springer, 55–72.
https://doi.org/10.1007/3-540-44898-5_4

[7] Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal.
2021. LoopOpt: Declarative Transformations Made Easy. In Pro-
ceedings of the 24th International Workshop on Software and Com-
pilers for Embedded Systems (Eindhoven, Netherlands) (SCOPES ’21).
Association for Computing Machinery, New York, NY, USA, 11–16.
https://doi.org/10.1145/3493229.3493301

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, Andrea C.
Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 578–
594. https://www.usenix.org/conference/osdi18/presentation/chen

[9] Thomas M Evans, Andrew Siegel, Erik W Draeger, Jack Deslippe, Mar-
ianne M Francois, Timothy C Germann, William E Hart, and Daniel F
Martin. 2022. A survey of software implementations used by appli-
cation codes in the Exascale Computing Project. The International
Journal of High Performance Computing Applications 36, 1 (2022), 5–12.
https://doi.org/10.1177/10943420211028940

[10] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling
problem: one dimensional time. Intl. Journal of Parallel Programming
21, 5 (october 1992), 313–348. https://doi.org/10.1007/BF01407835

[11] Bastian Hagedorn, Johannes Lenfers, Thomas Kundefinedhler, Xuey-
ing Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving high-
performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies. Proc. ACM
Program. Lang. 4, ICFP, Article 92 (aug 2020), 29 pages. https:
//doi.org/10.1145/3408974

[12] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc,
and Jonathan Ragan-Kelley. 2022. Exocompilation for productive

programming of hardware accelerators. In Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 703–718. https://doi.org/
10.1145/3519939.3523446

[13] Yuka Ikarashi, Jonathan Ragan-Kelley, Tsukasa Fukusato, Jun Kato,
and Takeo Igarashi. 2021. Guided Optimization for Image Process-
ing Pipelines. In 2021 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 1–5. https://doi.org/10.1109/
VL/HCC51201.2021.9576341

[14] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. JFP 28 (2018).
https://doi.org/10.1017/S0956796818000151

[15] Vasilios Kelefouras and Georgios Keramidas. 2022. Design and Im-
plementation of 2D Convolution on x86/x64 Processors. IEEE Trans-
actions on Parallel and Distributed Systems 33, 12 (2022), 3800–3815.
https://doi.org/10.1109/TPDS.2022.3171471

[16] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan
Ragan-Kelley. 2022. Verified Tensor-Program Optimization via High-
Level Scheduling Rewrites. 6, POPL, Article 55 (jan 2022), 28 pages.
https://doi.org/10.1145/3498717

[17] Pedro Pinto, João Bispo, João M. P. Cardoso, Jorge G. Barbosa, Da-
vide Gadioli, Gianluca Palermo, Jan Martinovič, Martin Golasowski,
Kateřina Slaninová, Radim Cmar, and Cristina Silvano. 2022. Pega-
sus: Performance Engineering for Software Applications Targeting
HPC Systems. IEEE Transactions on Software Engineering 48, 3 (2022),
732–754. https://doi.org/10.1109/TSE.2020.3001257

[18] Jonathan Ragan-Kelley. 2023. Technical Perspective: Reconsidering
the Design of User-Schedulable Languages. Commun. ACM 66, 3 (feb
2023), 88. https://doi.org/10.1145/3580370

[19] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. In Conference on Pro-
gramming Language Design and Implementation. 12 pages. https:
//doi.org/10.1145/2491956.2462176

[20] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science. 55–74. https://doi.org/10.1109/LICS.2002.1029817

[21] Ömer Sakar, Mohsen Safari, Marieke Huisman, and Anton Wijs. 2022.
Alpinist: An Annotation-Aware GPU Program Optimizer. In Tools
and Algorithms for the Construction and Analysis of Systems - 28th
International Conference, TACAS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 13244), Dana Fisman and Grigore Rosu (Eds.). Springer,
332–352. https://doi.org/10.1007/978-3-030-99527-0_18

[22] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: automat-
ing the foundational verification of C code with refined ownership
types. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, Virtual Event, Canada,
June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–
174. https://doi.org/10.1145/3453483.3454036

[23] Cristina Silvano, Giovanni Agosta, Andrea Bartolini, Andrea R. Beccari,
Luca Benini, Loïc Besnard, João Bispo, Radim Cmar, João M.P. Car-
doso, Carlo Cavazzoni, Daniele Cesarini, Stefano Cherubin, Federico
Ficarelli, Davide Gadioli, Martin Golasowski, Antonio Libri, Jan Marti-
novič, Gianluca Palermo, Pedro Pinto, Erven Rohou, Kateřina Slani-
nová, and Emanuele Vitali. 2019. The ANTAREX domain specific lan-
guage for high performance computing. Microprocessors and Microsys-
tems 68 (2019), 58–73. https://doi.org/10.1016/j.micpro.2019.05.005

https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1016/J.SOFTX.2020.100565
https://doi.org/10.1016/J.SOFTX.2020.100565
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/3493229.3493301
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1177/10943420211028940
https://doi.org/10.1007/BF01407835
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1109/VL/HCC51201.2021.9576341
https://doi.org/10.1109/VL/HCC51201.2021.9576341
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/TPDS.2022.3171471
https://doi.org/10.1145/3498717
https://doi.org/10.1109/TSE.2020.3001257
https://doi.org/10.1145/3580370
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1016/j.micpro.2019.05.005


Interactive Source-to-Source Optimizations Validated using Static Resource Analysis SOAP ’24, June 25, 2024, Copenhagen, Denmark

[24] Manish Vachharajani, Neil Vachharajani, David I. August, and Spyri-
don Triantafyllis. 2003. Compiler Optimization-Space Exploration.
In Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE Computer Society, Los
Alamitos, CA, USA, 204. https://doi.org/10.1109/CGO.2003.1191546

[25] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-
ing and Understanding Bugs in C Compilers. In Conference on Pro-
gramming Language Design and Implementation (San Jose, Califor-
nia, USA). Association for Computing Machinery, 12 pages. https:

//doi.org/10.1145/1993498.1993532
[26] Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2018. Visual

Program Manipulation in the Polyhedral Model. ACM Trans. Archit.
Code Optim. 15, 1, Article 16 (mar 2018), 25 pages. https://doi.org/10.
1145/3177961

Received 01-MAR-2024; accepted 2023-04-19

https://doi.org/10.1109/CGO.2003.1191546
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3177961
https://doi.org/10.1145/3177961

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 OptiTrust by Example
	3 Comparison to Related Work
	3.1 Related Work
	3.2 The Unique Features of OptiTrust

	4 Conclusion
	References

