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Overloading consists of using a same symbol to refer to several functions, or a same same to refer to several

constants. Overloading is ubiquitous in mathematics. It also appears in numerous programming languages

that resolve overloading statically, as opposed to languages that rely on dynamic dispatch during program

execution. Thus, a key question is how to determine, for every occurrence of an overloaded symbol, which

function it refers to. Static resolution of overloading is intrinsically intertwined with typechecking. Indeed,

overloading resolution depends on types, but the types of the overloaded symbols depend on how they are

resolved. This work presents the first typechecking algorithm for static resolution of overloading that: (1) guides

resolution not only by function arguments but also by expected result type, and (2) supports polymorphic types.

Moreover, our algorithm supports type inference like traditional ML typecheckers—we only exclude inference

of polymorphism. We illustrate the practicality of our algorithm for typechecking conventional mathematical

formulae, as well as for typechecking ML code with overloading of literals, functions, constructors, and record

field names.

1 INTRODUCTION
1.1 Overloading in Programming Languages
In programming languages, overloading enables a programmer to reuse, at different types, the same

mathematical operators, function names, method fields, and data constructor names. Arguably,

the use of overloading can obfuscate the code slightly, because the programmer needs to resolve

the symbols to know what they actually stand for. However, overloading greatly improves the

conciseness and the readability of the code. For these reasons, many programming languages

exploit overloading.

There are twomain approaches to resolving overloading: dynamic resolution and static resolution.

Consider an addition of two expressions, for example. With the dynamic approach, the runtime

system first evaluates the two expressions to values, then, depending on the shape of these values,

decide which addition operator is applicable. In contrast, this paper focuses on static resolution

of overloading: the aim is to be able to tell, before the execution, just by inspecting the types, to

which function every overloaded symbol corresponds to.

Several languages support static resolution of overloading. For example, C++ features function
overloading [Dos Reis and Stroustrup 1985; Stroustrup 1984]. PVS [Shankar 1996] and ADA [Watt

et al. 1987] support overloading not only of functions but also constants. OCaml does not support

overloading for functions or constructors; it partially supports overloading of record and constructor

names, yet their resolution is very fragile. Haskell provides a form of overloading via typeclasses,

however typeclasses induce runtime overheads—one motivation for static resolution is precisely

to avoid overheads and to enable further optimizations. The benefits of overloading in terms of

conciseness can be visualized via the example shown below.
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(* Without overloading *)

(float_of_int (n + 1)) *. (3.0 *. pi / 4.0)

(* With overloading *)

(float_of_int (n + 1)) * (3 * pi / 4)

(* Without overloading *)

Array.iteri f (Array.map succ (Array.concat t (Array.of_list [2;3])))

(* With overloading *)

iteri f (map succ (concat t (to_array [2;3])))

Further in the paper, we also show examples highlighting the benefits of overloading data construc-

tors and record field names.

1.2 Overloading in Mathematics
The practice of overloading has not been invented for programming languages. Indeed, mathe-

maticians have exploited overloading essentially forever. For example, mathematicians use the

symbol + to denote the addition operation regardless of the type of the addition. Only in case of

high ambiguity is a type annotation used, e.g., 𝑥 +Z 𝑦. The resolution of the type of a mathematical

operator can be guided, in most cases, by the type of the arguments that the operator is applied to.

For example, if 𝑥 and 𝑦 denote variables in Z, then 𝑥 + 𝑦 resolves to the addition operator from the

mathematical structure Z. Yet, in more complex examples, symbol resolution can be slightly less

obvious.

For example, consider the following formula, assuming𝑀 and 𝑁 to be two matrices over complex

numbers ∑︁
𝑑∈{𝑖,2𝑖 }

∑︁
𝑘∈[−6;7]

3 · 𝑒 𝑑 ·𝜋
8 ·𝑀2·𝑘2 · 𝑁

Can you deduce the type of every operator and constant involved in the following formula? Can you

present your reasoning steps in the form of an algorithm? Can you describe an efficient algorithm

for resolving all the symbols in the formula?

It appears that every mathematician and, more generally, every user of mathematics implicitly

have some form of algorithm for being able to resolve overloaded symbols. However, as surprizing

as this might be given the importance of mathematics, the algorithm at play does not appear to

have ever been made explicit! Proposing an algorithm able to resolve mathematical formulae as

mathematicians conventionally write them is crucial for at least two applications.

The first application is mechanized mathematics, typically carried out in a proof assistant. There,

overloading resolution would enable users to write formulae that follow standard mathematical

practice. There have been attempts at supporting overloading by means of typeclasses or canonical

structures. However, such encodings introduce a logical indirection that complicates proofs and

gets in the way of rewriting operations.
1

The second application—or rather, an important particular case of the first application—-is

for writing program specifications, in the context of formal verification. Program specifications

typically involve a fair number of mathematical facts. Such facts need to be parsed and processed

in a way that leaves no ambiguity whatsoever. At the same time, specifications are meant to be

readable by people who are not expert in formal methods. Hence, in the context of verifying a

program in a particular domain of application, it is crucial for statements to be as close as possible

to standard mathematics and to the standard notations used in that application domain.

1
Technically, an instance add (inst:=Z_add) x y is convertible in Coq to Z.add x y but these terms are not syntactically

equal, causing difficulties for matching and printing formulae.
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1.3 Related Work and Contribution
The overloading resolution algorithm of C++ is probably the most well-known, and the most widely

used. One fundamental limitation of this algorithm, though, is that functions are resolved based

solely on the type of arguments. Resolution never depends on the expected result type. As a result,

C++ does not support overloading resolution for constants. Yet, overloading constants is very useful:

for example ∅ denotes the empty set, but also the empty multiset, the empty map, etc. Likewise,

with overloading of constants, a literal such as 3 could be interpreted either as an integer or as a

floating-point value depending on the context.

The programming language ADA and the prover PVS have both addressed the issue of re-

solving overloaded constants. They do so by means of a bidirectional typechecking algorithm. A

bidirectional algorithm propagates type information both downwards—from the context to the

subterms—and upwards—in the opposite direction. Concretely, an overloaded constant is resolved

by the type expected by the context; and a function can be resolved based on both the type of its

arguments and its expected return type.

The algorithms from ADA and PVS have two important limitations. First, they do not support

polymorphism—they only support a form of functor construction. Second, they do not support

local inference—all variables must be explicitly typed. Our work removes these two limitations.

Concretely, this paper presents the first typechecking algorithm that resolves overloaded symbols

in the presence of polymorphism and local type inference.We have implemented our algorithm in an

ML-style programming language, simply ruling out partial applications, which generally introduces

too many ambiguities. We also leave aside the inference of polymorphism for the moment—maybe

this feature can be added in the future, yet one might argue that explicit type quantifiers (like in

Coq) make the code easier to read. Beyond programming languages, our algorithm can be applied

to resolve overloaded symbols in formulae appearing in the context of mechanized mathematics or

formal specifications.

Our prototype typechecker is implemented in OCaml.
2
The language it processes uses a syntax

that closely resembles that of OCaml. Our typechecker can produce as output a program decorated

with types, with every overloaded symbol decorated with the definition it refers to. Moreover,

our prototype can produce as output an OCaml source file, obtained by replacing all overloaded

symbols by the definitions they resolve to. This output file can be compiled and executed using the

OCaml standard toolchain.

One feature that we do not yet support is the treatment of implicit coercions, which are supported

for builtin types in C++, and supported for user-defined types in Coq. We leave their treatment to

future work.

The paper starts by presenting the key ideas, then explain the typing rules for the core 𝜆-calculus

with overloaded symbols, and finally presents extensions to records, to data constructors and

pattern matching, and to derived instances. A derived instance can be used to assert, e.g., that a sum

operation is available for any data structure that features a fold operation and whose elements

have a type that supports a zero and a plus operation.

2 OVERVIEW
2.1 Need for a Bidirectional Typechecker
Throughout the paper, we assume a context where two addition functions are available, one of type

int -> int -> int and another of type float -> float -> float. Let us assume the underlying

functions are built-in.

2
Our prototype can be tested online: https://chargueraud.org/research/2025/overloading/proto.php.
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external int_add : int -> int -> int = "%addint"

external float_add : float -> float -> float = "%addfloat"

In our prototype, we can register these two functions as instances of the plus symbol, via the

following syntax.

let (+) = __instance int_add

let (+) = __instance float_add

We show below two occurrences of the addition operator that are resolved based on the type of

the arguments.

let ex1 (x:int) (y:int) = x + y (* [+] resolves to [int_add] *)

let ex2 (x:float) (y:float) = x + y (* [+] resolves to [float_add] *)

Likewise, we would like to overload constants. We wish be able to write a constant, say 1, in the

same way regardless of whether it is the unit value in N, Z, Q, R or C. Unlike the resolution of an

operator, whose resolution may be guided by the type of its arguments, the resolution of a constant

must be guided by the type expected by its context.

let ex3 : int = 1 (* resolves [1:int] *)

let ex4 (x:int) = x + 1 (* resolves [1:int] *)

let ex5 (x:float) = 1 + x (* resolves [1:float] *)

When combining the use of overloaded operators and overloaded constants, one encounters

situationwhere resolution requires propagation of type information in depth. The following example

shows how an expected return type needs to be propagated downwards through operations until

reaching the constants at the leaves.

let ex5 : float = (3 + 4) + (1 + (0 + 2)) (* resolves [1:float] *)

In general, propagation of type information actually needs to be bidirectional. In the example

shown below, to realize that the operations at hand concern integer values, one needs to first

investigate the subexpression x + (0 + 2), exploit the fact that its left-hand side involves a value

of type int, then needs to propagate this type information in depth in the subexpression 3 + 4.

let ex6 (x:int) = (3 + 4) + (x + (0 + 2)) (* resolves [4:int] *)

Another example illustrating the need for bidirectional propagation appears next. In this example,

the resolution of the constant 0 that appears in the then-branch exploits the type information

inferred from deep in the else-branch.

let ex7 (x:float) =

if x < 0 then 0 + 1 else 2 * x (* resolves [0:float] *)

2.2 A Bidirectional Typechecking Algorithm
The bidirectional algorithm that we propose makes two passes over the AST. The first pass consists

of a recursive function that propagates the expected type, if it is available, downwards into the

subterms. Moreover, via the result of the recursive calls, type information from the subterms is

propagated upwards.
3
The second pass propagates expected type downwards into the subterms,

a second time. However, this time the expected type could be more refined than in the first pass,

thanks to information synthesized from other subterms during the first pass.

3
Technically, the expected type provided as arguments is unified with the type of the term at hand, hence there is no need

for the recursive function to return a type as result.
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The types manipulated by the algorithm consist either of a conventional ML type, possibly a

partially resolved type such as list ?A, or of a special type, written Unresolved. For example, if x

has type int, then the expression x and the expression x + 2 resolve to type int. On the contrary,

the expression 0 and the expression 0 + 2, when their expected return type is unspecified, are

associated with the type Unresolved.

The type information acquired during the first pass may be exploited, during a second pass, to

infer the type of subterms that were Unresolved after the first pass. For example, assume x has type

int, and consider the typing of the expression (0 + 2)+ x. On the one hand, the subterm 0 + 2

has type Unresolved. On the other hand, x has type int. Thus, the addition at hand must be the

one of type int -> int -> int. We deduce that 0 + 2 should be of type int. In the second pass, we

propagate this information downwards into the subterms of 0 + 2. We conclude that the constants

0 and 2 have type int.

After the 2 passes, we expect every subterm to be labelled with a type. In particular, we expect

all overloaded functions (including constants) to be resolved. If an overloaded function remains

unresolved, we reject the program.

The reader may ask why 2 passes and not 3 or more. Our rational is as follows. First, the practical

code patterns that we have considered appear to all successfully typecheck using 2 passes. Second,

as we illustrate in this paper, example programs that require more than 2 passes to typecheck

appear to have an intristic complexity that makes them challenging for a programmer to mentally

typecheck. Third, a smaller number of passes is beneficial for the efficiency of typechecking. That

said, one possibility that we would like to explore is to execute, in case of remaining unresolved

symbols after the second pass, additional passes. This way, in case of the typechecking ends up

succeeding, we could report to the user a message indicating that the program provided is not

ill-typed yet is missing a few type annotations to allow for faster typechecking.

We next focus in more details on two critical aspects of the algorithms. First, we explain which

constructs make this expected return type available, and which constructs introduce subterms

with an unknown expected return type. Second, we explain how to retain the ability to perform a

significant amount of local type inference for local variables in the presence of overloaded functions.

2.3 Availability of the Expected Return Type
The first pass propagates downward the type expected for the term. There are essentially three

ways by which the expected type can be determined.

• First, it may come from an explicit type annotation.

• Second, it may come from the control structure. For example, in a conditional of the form

if t0 then t1 else t2, the term t0 must have type bool.

• Third, the type of function arguments may be deduced from the type of the function being

applied, when this function is resolved. For example, if there is a unique instance of f of type

int -> int, then when typing the application f 0, the subterm 0 is known to be of type int.

Similarly, the addition ((0 + 2): int) can be resolved from the expected type int, thus the

subterms 0 and 2 are resolved to be of type int during the first pass of the algorithm.

In contrast, there are several constructs for which the type of the subterms cannot be guessed

immediately.

• First, consider a let-binding of the form let x = t1 in t2. No expected type is available for

the first-pass typing of t1. As we shall see, the type of x may be inferred from the typing of

t1. Alternatively, it may be inferred from the occurrences of x inside t2, in which case the

type inferred for x is propagated into t1 during the second pass. More generally, the type of
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t1 may also be inferred as a combination of the type of t1 and of the types imposed by the

contexts associated with the occurrences of x.

• Second, consider a function call of the form f t1, and assume that the expected return type

is not known. The resolution of the argument t1 must proceed in the first pass without an

expected return type. The type inferred for t1 might help resolve f. If it does not suffice to

resolve f in the call f t1, then the type returned for that call is Unresolved. In that case, an

expected return type propagated during the second pass may help resolve the call.

• Third, consider a function call of the form f t1, and assume that the expected return type is

known, but that there are several instances of f that are compatible with that return type. In

this case again, t1 is typed without an expected return type. The type inferred for t1 should

suffice to resolve f, otherwise f cannot be resolved and our algorithm rejects the program.

2.4 Local Type Inference in the Presence of Overloading
ML type inference offers a strong form of local type inference that, in particular, can infer the type

of a local variable either based on its definition or based on its occurrences. Inferring the type of a

variable from its occurrences is exploited in ML for example in a term of the form fun x -> t1, or

in a term of the form let x = ref [] in t1. One strong benefit of local type inference is that it

saves the need for most, if not all, type annotations. Yet, preserving a strong form of local inference

in the presence of overloading can involve nontrivial flow of type propagation.

Consider the following example.

let ex8 =

let x = 0 in

let y = 1 in

let z = x + y in

(2 + x) + (3:int)

At first, the type of the variables x, y and z is Unresolved. On the last line, one can deduce via

bidirectional typing that x admits type int. It follows the definition of x, i.e., the occurrence of 0,

has type int. Moreover, it follows that the addition x + y has type int, because the first argument

of this addition has type int. Hence, its second argument, namely the variable y, also admits type

int. Finally, we deduce that the definition of y, i.e., the occurrence of 1, has type int.

Another interesting example involves a local function definition. Consider the definition exlet1

shown below, followed with exlet2where the “plus 42” operator has been named as a local function.

let exlet1 (f:int->int) (g:int->int) (x:int) : int =

f (x + 42) + g (2*x + 42)

let exlet2 (f:int->int) (g:int->int) (x:int) : int =

let op = (fun n -> n + 42) in

f (op x) + g (op (2*x))

Our algorithm is able to deduce, based on the calls to op that the + operation in the definition of op

is an integer operation. More generally, our typing algorithm features the ability to type a local

variable using information coming either from its definition or from its occurrences.

In summary, the interplay between overloading resolution and local type inference requires

particular care with respect to the treatment of bound variables. Our bidirectional algorithm

propagates type information in a specific manner during the two-pass process. Indirectly, via the

type unifications performed, our algorithm gathers type constraints associated with the occurrences

of variables. Thereby, our typing algorithm is able to handle idiomatic ML programming patterns
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without the need for type annotations on variables. Such amixture of local inference and overloading

resolution is not achieved by the existing algorithms implemented in PVS, ADA, and C++.

3 COMPLEXITY OF OVERLOADING RESOLUTION
Let us show that overloading resolution is NP-hard. We begin by presesnting the simplest proof,

which consists of a reduction to a problem known as positive one-in-three 3-SAT. We then present a

slighly more complex proof, which reduces to the more standard problem 3-SAT. Both encodings

involve two types, int and float, which are used to encode true and false, and involve a number of

variables xi, each defined as the overloaded integer 0. This integer 0 can be interpreted at type int

or float. For each occurence of 0, the choice of its type reflects a decision to interpret the variable

xi as true or as false.

3.1 Reduction to Positive One-in-Three 3-SAT
Assume 0 to have two instances, of type int and float. Assume f be a unit function of three

arguments, with three instances, each instance accepting one argument of type int and two other

arguments of type float, in the three possible order.

__instance 0 : int

__instance 0 : float

__instance f : int -> float -> float -> unit

__instance f : float -> int -> float -> unit

__instance f : float -> float -> int -> unit

Now, consider the example program:

let x1 = 0 in

let x2 = 0 in

let x3 = 0 in

let x4 = 0 in

let x5 = 0 in

let x6 = 0 in

f x1 x3 x4;

f x1 x4 x5;

f x2 x3 x5;

f x2 x3 x6;

This program admits a resolution of overloaded symbol if and only if the boolean formula:

(𝑥1 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥4 ∨ 𝑥5) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥5) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥6)

admits an instantiation of the boolean variables 𝑥𝑖 such that each of the conjuncts includes exactly

one true variable (and thus two false variables). In general, this problem is known as positive
one-in-three 3-SAT, which is known to be NP-hard.

Following the scheme presented above, it is clear that any formula of positive one-in-three 3-SAT
can be encoded into a program that admits at one (or more) resolution of overloaded symbol if and

only if the formula considered is satisfiable. Hence, overloading resolution is NP-hard.

3.2 Reduction to 3-SAT
By introducing just a few more instances, we can encode instances of 3-SAT. We need a negation

function, which converts float to int and vice-versa. We also need additional instances of our

previous function f, to account for the cases where more than one disjunct is true.
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__instance 0 : int

__instance 0 : float

__instance neg : float -> int

__instance neg : int -> float

__instance f : int -> float -> float -> unit

__instance f : float -> int -> float -> unit

__instance f : float -> float -> int -> unit

__instance f : int -> int -> float -> unit

__instance f : int -> float -> int -> unit

__instance f : float -> int -> int -> unit

__instance f : int -> int -> int -> unit

Now, consider the example program:

let x1 = 0 in

let x2 = 0 in

let x3 = 0 in

let x4 = 0 in

let x5 = 0 in

f x1 x3 (neg x4);

f x1 x4 (neg x5);

f x2 (neg x3) x5;

f (neg x2) x3 (neg x6);

This program admits a resolution of overloaded symbol if and only if the boolean formula:

(𝑥1 ∨ 𝑥3 ∨ ¬𝑥4) ∧ (𝑥1 ∨ 𝑥4 ∨ ¬𝑥5) ∧ (𝑥2 ∨ ¬𝑥3 ∨ 𝑥5) ∧ (¬𝑥2 ∨ 𝑥3 ∨ ¬𝑥5)

admits an instantiation of the boolean variables 𝑥𝑖 such that each conjunct evaluates to true (that
is, each conjunct includes at least one true variable).
Following the scheme presented above, it is clear that any formula of 3-SAT can be encoded

into a program that admits at least one resolution of overloaded symbol if and only if the formula

considered is satisfiable. This gives us a second proof that overloading resolution is NP-hard.

4 TYPECHECKING RULES
The typechecking and symbol-resolution process is thereafter refered to as typechecking for short.

This typechecking process leverages unification steps. These steps are implemented using a mutable

data structure for representing all the types involved, together with a recursive function called unify.
This structure is standard to STLC and ML typechecking; We recall how it works in Section 4.1.

Our typechecking process then involves two phases. In the first phase, we perfom all the unifica-

tion that captures the constraints of ML typechecking. For symbols that are not yet resolved, we

simply introduce a not-yet-constrainted type. Then, in a second phase, we try to resolve overloaded

symbols iteratively. If there exists one symbol for which exactly one of its possible instances would

unify with type expected for this symbol by its context, then we can assign this symbol to this one

instance.

The resolution of one overloaded symbol may introduce additional constraints, which materialize

by additional type unifications. Hence, the resolution of one symbol may allow for the resolution

of other symbols that could not be previously resolved. We iterate the resolution process until it

converges. Two cases are possible. If all symbols are resolved, then the program is fully resolved and

typechecked. Otherwise, the program is either ambiguous (i.e., several instantiations are possible),
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type id = unit ref (* unique identifier for type variables and constructors *)

type typ = desc ref (* type representations are mutable *)

and desc =

| Flexible (* type is not yet constrained *)

| Unified of typ (* type is unified with another one *)

| Constr of id * typ list (* structured type; e.g.:

[Constr(id_arrow,[T1;T2])] represents the type [T1 -> T2];

[Constr(id_int,[])] represents the constant type [int];

[Constr(c,[])] represents a polymorphic type variable ['a] in the context of a

type scheme where [c] is the identifier for that variable. *)

type sch = list id * typ (* type scheme, e.g. [forall 'a. 'a -> 'a] *)

(* where the [typ] in a [sch] does not contain any [Unified] or [Flexible]. *)

Fig. 1. Internal representation of types and type schemes. Our prototype includes additional field to store
human-readable names for type variables, and to store marks used during cycle detection.

let rec unify (t1:typ) (t2:typ) : unit = (* may raise the [Failure] exception *)

if !t1 != !t2 then

match !t1, !t2 with

| Unified t1', _ -> unify t1' t2

| _, Unified t2' -> unify t1 t2'

| Flexible, _ -> t1 := Unified t2

| _, Flexible -> t2 := Unified t1

| Constr(c1,ts1), Constr(c2,ts2) ->

if c1 != c2 || List.length ts1 <> List.length ts2 then raise Failure;

List.iter2 unify ts1 ts2

Fig. 2. Implementation of unification. Our implementation includes additional operations for path compres-
sion, cycle detection, support for backtracking, and support for informative error messages.

or the symbol resolution for this program is too complex to be achieved by simple deduction steps

(i.e., additional type annotations would be needed).

4.1 Representation of Types
We begin by recalling the standard technique for representing types in a unification-based type-

checker. We describe the core ideas by means of presenting a simplified OCaml implementation.

We refer to our prototype implementation for the ingredients that are not described here. They

include:

• Path compression: for improve performance, the unification function ought to compress

the paths that it follows (like in the Union-Find data structure); our prototype uses a get_repr

function to achieve this.

• Efficient backtracking: our typechecking algorithm involves unification attempts, which
needs to be undone in case several instances successfully unify; our prototype records in a

stack checkpoints and update descriptions to allow for efficiently reverting to a previous state.
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(* Substitute bindings of [m] in a copy of [t] *)

let rec subst (m:(id*typ)list) (t:typ) : typ =

match !t with

| Flexible | Unified _ -> assert false

| Constr(x,[]) when List.mem_assq x rho -> List.assq id m

| Constr(c,ts) -> ref (Constr(c, List.map (subst m) ts))

(* Scheme instantiation, e.g. [forall 'a. 'a -> 'a] becomes

[?t -> ?t] for a fresh flexible type [?t] *)

let instantiateScheme (s:sch) : unit =

let (xs,t) = s in

let m = List.map (fun x -> (x, ref Flexible)) xs in

subst m t

let unifyScheme (s:sch) (t':typ) : unit =

let t = instantiateScheme s in

unify t t'

let checkScheme (s:sch) (t':typ) : unit =

let (xs,t) = s in

unify t t'

Fig. 3. Definitions of checkScheme(𝑆,𝑇 ′) and unifyScheme(𝑆,𝑇 ′). The function checkScheme(𝑆,𝑇 ′) checks
that the type𝑇 ′ unifies with the type scheme 𝑆 without constraining the polymorphic variables quantified by
that type scheme. The function unifyScheme(𝑆,𝑇 ′) unifies a type 𝑇 with an instantiation of a type scheme 𝑆
of the form ∀ ®𝑋 .𝑇 , that is, it invokes unify(( [ ®𝐴/ ®𝑋 ]𝑇 ),𝑇 ′), where the types ®𝐴 denote fresh flexible types. The
OCaml operations List.mem_assq and List.assq implement search in an association list by using physical
equality for comparison—recall the identifiers have type “unit ref”.

• Cycle detection: unless one is interested in supporting recursive types (as with OCaml’s

-rectypes compiler flag), one needs to ensure that no cycles are created in the graph-based

representation of types.

• Error reporting: additional code is needed to report informative error messages to the user

in case of unification failure; in particular, type variables need to preserve and introduce

human-readable names for type variables.

Definition 4.1 (Grammar of ML types). ML typechecking involves types and type-schemes, char-

acterized by the following grammar.

ML types 𝜏 ::= unit | bool | int | float | 𝛼 | 𝜏 → 𝜏 | 𝐶 (®𝜏)
ML type schemes 𝜎 ::= ∀®𝛼. 𝜏

Above, the form𝐶 (®𝜏) corresponds to the application of a type constructor, e.g., bool list in OCaml.

As we will see shortly afterwards, one can view the constant constructors (e.g. int) and type

variables (written 𝛼 above) as applications of constructors to zero arguments. Likewise, one can

view the arrow type 𝜏1 → 𝜏2 as a particular type constructor applied to the list made of 𝜏1 and 𝜏2.

Fig. 1 gives the internal representation of types that we use for typechecking. A type (type

typ) may be refined during the unification process, hence it is described as a reference over a

type description (type desc). The descriptions are as follows. A constant type, int is described
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as Constr(id_int,[]), where id_int is the unique identifier for the type int. Identifiers are here

represented at type unit ref, which is a trivial implementation of unique identifiers. A type of

the form 𝜏1 → 𝜏2 is described in the form Constr(id_arrow,[T1;T2]), that is, as the identifier for

the arrow constructor paired with the list of two types T1 and T2, which internalize 𝜏1 and 𝜏2,

respectively.

If a type associated with a subterm is not yet constrained to any particular shape, then this type

is described as ref Flexible, for a special flexible constructor. If a type T1 has already been unified

with another type T2, then the representation of T1 is set to ref (Unified T2).

A ML type scheme consists of a type with universally quantified variables. For example, the type

of the identity function is ∀𝐴.𝐴 → 𝐴, which is written forall 'a. 'a -> 'a in OCaml. The type

sch denotes a type scheme. It consists of a list of identifiers and a type. In this type, a polymorphic

variables with identifier x is described as a constant constructor Constr(x,[]). For example, the

representation type ∀𝐴.𝐴 → 𝐴 can be constructed as shown below.

(* internalization of [forall 'a. 'a -> 'a] *)

let a : id = ref () in

let a1 : typ = ref(Constr(a,[])) in

let a2 : typ = ref(Constr(a,[])) in (* variant: [let a2 = a1 in] *)

([a], ref (Constr(id_arrow,[a1; a2])))

More generally, any user-provided type annotation needs to be interalized as an object of type

typ, so that this type annotation can be exploited during the typecheck process. The details of

internalization may be found in our prototype.

Fig. 2 shows the implementation of the unification function, named unify, which takes two types

T1 and T2. The purpose of this function is: (1) to ensure that the representation of these two types

do not conflict; and (2) to mutate the structure in such a way that any future refinement applied to

T1 will be also (implicitly) applied to T2, and vice-versa. The function is implemented recursively.

All the Unified constructors are traversed. If a Flexible type is found, it is turned into a Unified.

If two structured types are found, the function checks that the constructors match, then unify

recursively the lists of type arguments. For example, to unify the types T11->T12 with T21->T22,

one recursively unifies T11 with T21 and T12 with T22.

Fig. 3 gives the implementation of three functions that are meant to deal with ML type schemes.

The function instantiateScheme applies to a type scheme, and specializes it on a fresh types. For

example, for the type scheme ∀𝐴.𝐴 → 𝐴 the function instantiateScheme produces 𝑇 → 𝑇 for an

unconstrainted type 𝑇 .

The function unifyScheme is a shorthand that applies to a type scheme 𝑆 and to a type 𝑇 , and

that unifies 𝑇 with an instance of 𝑆 . For example, given the type scheme ∀𝐴.𝐴 → 𝐴 and a type

int → 𝑈 for some unconstrained type 𝑈 , the function unifyScheme unifies 𝑈 as int. This function
unifyScheme is exploited in particular for typechecking occurrence of variables, and for testing

candidate instances of an overloaded symbol.

The function checkScheme also applies to a type scheme 𝑆 and to a type𝑇 . Its purpose is to check

that𝑇 is as general as 𝑆 . For example, consider an identity function annotated with the type scheme

∀𝐴.𝐴 → 𝐴. The type inferred for the implementation of this identity function is 𝑇 → 𝑇 , for an

unconstrainted type 𝑇 . In order to check that the implementation is as polymorphic as the type

annotation claims, one needs not only to unify 𝑇 → 𝑇 with 𝐴 → 𝐴, but also needs to check that 𝑇

was not previously unified with any other type. The function checkScheme implements this check

by treating the type variable 𝐴 as a (zero-arity) type contructor. Sucn a constructor only unifies

with itself.
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4.2 Declarative Typechecking
Definition 4.2 (Initial labelling with fresh flexible types). Given a program, we assign to every

node and every binder of the AST a fresh type, that is, a value of type typ allocated as ref Flexible.

As an exception, if a binder is already annotated with a type or a type scheme, we re-use the

(internalized representation) of this type. Moreover, every variable occurrence is labelled with a

unique identifier, written 𝑥id. Identifiers is used for keep track of the values to which overloaded

symbols are resolved. Programs labelled in such a way correspond to the following grammar.

Terms labelled with a type 𝑡 ::= 𝑢 :𝑇

Contents of a term 𝑢 ::= 𝑥id | 𝑣 | 𝑡1 (𝑡2) | let𝑥 :𝑆 = 𝑡1 in 𝑡2 | 𝜆𝑥 :𝑇 . 𝑡1
Literals 𝑣 ::= tt | 𝑏 | 𝑛 | 𝑑

For literals, we here include the unit value, boolean values, integers, and floating-point numbers,

which are used in our examples. Note that in a source programs, functions appear as terms; it is

only during the runtime evaluation of a program that functions evaluate to closures, which belong

to the rammar of runtime values.

Remark: a program may contain user-guided type annotations on arbitrary subterms, written in

OCaml syntax as (t : T). From the perspective of typechecking, this construct can be processed

exactly as let x : T = t in x, which does fit the above grammar. Our implementation nevertheless

features direct support for user-guided type annotations, in order to allow for more informative

error messages.

Definition 4.3 (ML-Typechecking phase). Given a program where every AST node and every

binder is initially annotated with a Flexible type, apply the rules given the table below to every

AST node, in any order.

Subterm labelled with its type Operations to apply

(let𝑥 :𝑆 = 𝑢1
:𝑇1 in𝑢2:𝑇2 )

:𝑇 checkScheme(𝑆,𝑇1) ; unify(𝑇2,𝑇 )
(𝑢0:𝑇0 (𝑢1:𝑇1 ))

:𝑇 unify(𝑇0, 𝑇1 → 𝑇 )
(𝜆𝑥 :𝑇0 . 𝑢1:𝑇1 )

:𝑇 unify(𝑇, 𝑇0 → 𝑇1)
𝑣 :𝑇 where 𝑣 is a literal of type 𝑇 ′ unify(𝑇 ′,𝑇 )
𝑥 :𝑇id if 𝑥 is bound in scope to 𝑆 unifyScheme(𝑆,𝑇 )
𝑥 :𝑇id if 𝑥 is an overloaded symbol do nothing

Definition 4.4 (Symbol resolution phase). Consider a program on which the ML-typechecking

phase has already been applied. The occurrence of overloaded symbols may be resolved, in any

order, by repeatedly applying the following rule as many times as possible. The rule captures the

fact that exactly one of the possible instance has a type that would unify succesfully.

Subterm with its type Conditions to satisfy Operations to apply

𝑥 :𝑇id where 𝑥id is an

occurrence of a not-yet-

resolved overloaded symbol

with possible instances

(𝑣1 : 𝑆1), . . . , (𝑣𝑛 : 𝑆𝑛)

unifyScheme(𝑆𝑖 ,𝑇 ) would succed

∧ ∀𝑗 ≠ 𝑖 . unifyScheme(𝑆 𝑗 ,𝑇 ) would fail

record 𝑥id resolved as 𝑣𝑖 ;

unifyScheme(𝑆𝑖 ,𝑇 )

Definition 4.5 (Declarative typeckecking). To typecheck a program and resolves its symbols, apply

the following steps:

(1) Decorate every node of the AST with a fresh flexible type, as descrribed in Definition 4.2.
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(2) Perform unifications associated with ML-typechecking, as described in Definition 4.3.

(3) Iteratively apply the symbol resolution rule from Definition 4.4 as many times as possible.

(4) If all symbols are resolved, then typechecking is successful.

Actually, the substeps of (2) and (3) can be interleaved in any order.

4.3 Properties of Declarative Typechecking
We need to model the mutable state, which is implemented by means of references in Fig. 1.

Definition 4.6 (Mutable state for the typechecker). The state binds a type identifier𝑇 (a location of

type typ) to its description 𝐷 (a value of type desc). The state also maps certain variable identifiers

to the values they resolve to, e.g. the identifier id of a variable 𝑥id may be mapped to a value 𝑣 .

Type representation 𝑇 ::= unique identifiers
Type description 𝐷 ::= Flexible | Unified𝑇 | Constr(𝐶, ®𝑇 )
Type scheme 𝑆 ::= ∀ ®𝐶. 𝑇
Mutable state 𝑠 ::= ∅ | 𝑠 [𝑇 := 𝐷] | 𝑠 [id := 𝑣]

After typechecking a program, certain type may remain unconstrained. For example, when

typechking the program let x = None in true, None is assigned the type T option, where the type

T remains unconstrained. At the end of the typechecking process, these unconstrained can be freely

interpreted as any type. To simplify proofs, we choose to assign unconstrained type to the unit

type.

Definition 4.7 (Interpretation of type representations). In a given state 𝑠 , and in a context 𝑉 that

maps type constructor identifiers (written𝐶) to ML type variable (written 𝛼), a type𝑇 is interpreted

as an ML type J𝑇 K𝑉𝑠 , defined recursively as follows, using the operation J𝐷K𝑉𝑠 to interpret a type

description. (The result is undefined in case of cycles.)

J𝑇 K𝑉𝑠 := J𝑠 [𝑇 ]K𝑉𝑠
JFlexibleK𝑉𝑠 := unit
JUnified𝑇 ′K𝑉𝑠 := J𝑇 ′K𝑉𝑠
JConstr(𝐶, [])K𝑉𝑠 := 𝛼 if 𝑉 (𝐶) = 𝛼

JConstr(𝐶, [𝑇1, ...,𝑇𝑛])K𝑉𝑠 := 𝐶 ( [J𝑇1K𝑉𝑠 , ..., J𝑇𝑛K𝑉𝑠 ])

J∀ ®𝐶. 𝑇 K𝑉𝑠 := ∀®𝛼. J𝑇 K(𝑉 [ ®𝐶 := ®𝛼 ] )
𝑠

Definition 4.8 (Interpretation of states). A state 𝑠 that binds type identifiers (written 𝑇 ) to type

descriptions (written 𝐷) can be interpreted as a map written J𝑠K that maps the binds the same type

identifiers to ML types (written 𝜏).

J𝑠K[𝑇 ] := J𝑠 [𝑇 ]K∅𝑠
Definition 4.9 (Equivalent states). Two states 𝑠 and 𝑠′ are equivalent if and only if they have the

same interpretation, that is, if and only if: J𝑠K = J𝑠′K.

We next introduce judgments for every operation.

Definition 4.10 (Typing judgment for literals). ⊢lit 𝑣 : 𝑇 assets that 𝑣 is a literal of type 𝑇 .

Using our formalism with explicit state, we revisit the unification and checking operations

defined in Fig. 2 and Fig. 3.

Definition 4.11 (Unification operation).

𝑠1 ⊢ unify(𝑇,𝑇 ′) ⊣ 𝑠2
describes the operation of executing unify(𝑇,𝑇 ′)
defined in Fig. 2 with the state evolving from 𝑠1 to 𝑠2.
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Definition 4.12 (Scheme checking operation).

𝑠1 ⊢ checkScheme(𝑆,𝑇 ) ⊣ 𝑠2
describes the operation of executing checkScheme(𝑆,𝑇 )
defined in Fig. 3, with the state evolving from 𝑠1 to 𝑠2.

Definition 4.13 (Scheme unification operation).

𝑠1 ⊢ unifyScheme(𝑆,𝑇 ) ⊣ 𝑠2
describes the operation of executing unifyScheme(𝑆,𝑇 )
defined in Fig. 3, with the state evolving from 𝑠1 to 𝑠2.

We also revisit the symbol resolution operation that was previously described in Definition 4.4.

Definition 4.14 (Symbol resolution).

𝑠1 ⊢res (𝑥 :𝑇id ) ∈ 𝐼 ⊣ 𝑠2
The resolution of the symbol 𝑥id of type 𝑇 against a set of

candidate instances 𝐼 makes the state evolve from 𝑠1 to 𝑠2.

The judgment is defined by a rule that handles the resolution (a single candidate instance unifies),

and a rule that reduces the set of candidate instances (more than one candidate instances unify).

If zero candidate instances unify, the algorithm is stuck—in the implementation, an exception is

raised.

𝐼 = (𝑣1 : 𝑆1), . . . , (𝑣𝑛 : 𝑆𝑛) 𝑠 ⊢ unifyScheme(𝑆𝑖 ,𝑇 ) ⊣ 𝑠𝑖
∀𝑗 ≠ 𝑖 . ¬

(
∃𝑠 𝑗 . 𝑠 ⊢ unifyScheme(𝑆 𝑗 ,𝑇 ) ⊣ 𝑠 𝑗

)
𝑠 ⊢res (𝑥 :𝑇id ) ∈ 𝐼 ⊣ (𝑠𝑖 [id := 𝑣𝑖 ])

ResUniqe

𝐼 = (𝑣1 : 𝑆1), . . . , (𝑣𝑛 : 𝑆𝑛)
𝐼 ′ = {(𝑣𝑖 : 𝑆𝑖 ) ∈ 𝐼 | ∃𝑠𝑖 . 𝑠 ⊢ unifyScheme(𝑆𝑖 ,𝑇 ) ⊣ 𝑠𝑖 } |𝐼 ′ | ≥ 2

𝑠 ⊢res (𝑥 :𝑇id ) ∈ 𝐼 ⊣ (𝑠 [id := 𝐼 ′])
ResMultiple

The commutativity lemma justifies that all the ML typechecking steps (substeps of (2) in Defini-

tion 4.5) can be performed in any order.

Lemma 4.15 (Commutativity of unifications). If two unification operations succeed, then
swapping their execution leads to an equivalent state.

TODO. □

The monotocity lemmas, together with commutativity, justifies the ability to interleave reso-

lution steps (substeps of (3) in Definition 4.5) with the ML typechecking steps (substeps of (2) in

Definition 4.5).

Lemma 4.16 (Monotonicity of unification).

• Monotonicity of unification successes: if a unification succeeds when performed before
another unification, it would also succeed if performed after that other unification.

• Monotonicity of unification failures: if a unification fails when performed before another
unification, it would also fail if performed after that other unification.

• Successful unifications can be anticipated: if a unification succeeds when performed after
another unification, it would also succeed if performed before that other unification.

TODO. □

Note that if two unifications are incompatible, the second unification being performed would

fail whereas the first one being performed could succeed.

Lemma 4.17 (Monotonicity of resolution).
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• Monotonicity of resolutions: if a successful resolution is followed by a successful unification,
then this unification can be performed before the resolution, leading to equivalent states.

• Resolutions can be anticipated if they succeed: if a resolution succeeds after a successful
unification, and if the resolution succeeds when executed before that unification, then the two
operations can be swapped, leading to equivalent states.

TODO. □

Definition 4.18 (Definition of ML typing rules). TODO: recall the standard typing rules of ML, on

our grammar. Use Γ to denote a ML typing environment, bindings 𝑥 to 𝜎 .

Theorem 4.19 (Type soundness). If a program successfully typechecks against our rules, then the
extracted program where overloaded symbols are replaced with the values they resolved to is well-typed
against the standard ML typing rules.

Proof. The unifications that are performed (and not backtracked) during our full typechecking

process are the same as those performed during ML typechecking. Overloaded symbols are replaced

with values that are typechecked after the other nodes, but this has no incidence. Indeed, recall

from standard typechecking theory that the order in which unifications are performed does not

matter. □

Theorem 4.20 (Non-ambiguity). If a program successfully typechecks against our rules, then no
other instantiation of the set of overloaded symbols could lead to a well-typed ML program.

Proof. Assume the contrary. Consider the set of symbols that are resolved differently in the two

instantiations. Consider the first of these symbols that has been resolved by our algorithm. For this

symbol, more than one instantiation is possible, hence the rule of Definition 4.4 does not apply.

Contradiction. □

Theorem 4.21 (Characterization of ill-typed programs). If a program does not typecheck
against our rules, then:

• either no instantiation of overloaded symbols make the program well-typed in ML;
• or there are more than one instantiation that makes the program well-typed in ML; in this case,
disambiguation can be achieved by adding type annotations;

• or there is exactly only instantiation that makes the program well-typed in ML, yet this instanti-
ation cannot be deduced by applying a series of simple deduction steps (in the sense of applying
a step of Definition 4.4 to one of the remaining unresolved symbols); in this case, resolution can
be guided by adding type annotations.

Proof. Let 𝑁 be the number of instantiations of the set of overloaded symbols that make the

program well-typed. The three cases correspond to 𝑁 = 0, 𝑁 > 1 and 𝑁 = 1, respectively. □

5 TYPECHECKING ALGORITHM
The previous section describes rules for typechecking a program, but does not specify the order in

which to apply the rules. Each succesful resolution of a symbol may unlock the ability to resolve on

other symbol. Hence, in the worst case, we may need a quadratic number of resolution attempts.

In this section, we present an algorithm for applying rules in a specific order. This algorithm

attempts the resolution of a given symbol at most three times. Moreover, it requires only two

traversals of the AST describing the program.

The proposed algorithm is incomplete: it typechecks fewer program than the set of rules pre-

sented earlier. However, as we have argued, a practical solution is necessarily incomplete because

overloading resolution is NP-hard. Besides, as we will argue by means of examples, the 2-pass
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algorithm that we propose suffices to resolve overloaded symbols in many common programming

patterns.

We begin with an informal presentation, which specifies our algorithm in an accessible manner,

following the presentation style of certain language standards, e.g., that ECMAScript for the

JavaScript language. We then formalize the algorithm through a set of inference rules, making the

mutable state explicit.

5.1 Informal Presentation
We assume the input program to have its node labelled as described in Section 4.2. We describe how

to process the AST in two passes, including the work associated with structural ML typechecking

as described in 4.3.

The algorithm is described as a recursive function. This function threads an environment, which
binds variables to a type scheme, or bind them to a list of instances in case of an overloaded symbol.

Typechecking of Literals. To typecheck a literal 𝑣 labelled with a type 𝑇 , written 𝑣 :𝑇 , it suffices to

unify 𝑇 with the type of that literal. For example, for the boolean constant true, unify 𝑇 with bool.

Typechecking of Regular Variables. To typecheck a variable 𝑥 labelled with a type 𝑇 , written 𝑥 :𝑇 ,

the first step is to look up the type 𝑆 associated to 𝑥 in the environment. The, the type 𝑇 is unified

with a fresh instance of 𝑆 , by means of executing unifyScheme(𝑆,𝑇 ).

Typechecking of Overloaded Symbols. We next explain how to typecheck an overloaded symbol

𝑥 :𝑇id . During the first pass, the symbol may remain unresolved, however after the second pass it

must be resolved. A resolution attempts proceed as follows.

(1) Consider the set of instances associated with the overloaded symbol 𝑥 . The 𝑖-th instance

consists of a value 𝑣𝑖 of type 𝑆𝑖 .

(2) For each 𝑆𝑖 , test whether 𝑇 could unify with 𝑆𝑖 , by evaluating unifyScheme(𝑆𝑖 ,𝑇 ). Keep the

boolean result of the test, but undo all the side-effects performed during this process.

(3) Count for how many indices 𝑖 the unifications have succeeded.

• If none of the instance unify, raise the exception NoInstanceMatch.

• If exactly one instance 𝑆𝑖 unifies with𝑇 , then record 𝑥id as resolved to the value 𝑣𝑖 . Evaluate

again unifyScheme(𝑆𝑖 ,𝑇 ), this time keeping the side-effects.

• If several instances could unify, then they are two cases. If on the first pass, then do nothing.

If on the second pass, then raise the exception MultipleInstancesMatch.

Optimization: during the first pass, if more than one instance unifies, then we can store the

subset of instances that could unify. It suffices to consider this subset during the second pass. In

other work, we may save work by definitely ruling out instances that already do not unify during

the first pass.

Typechecking of Function Calls. In what follows, we explain how to typecheck a term of the form

𝑡0 (𝑡1, .., 𝑡𝑛), labelled with a type 𝑇 . Let 𝑇𝑖 denote the type of the subterm 𝑡𝑖 , for each 𝑖 .

First pass.

(1) Unify the type 𝑇0 with 𝑇1 → .. → 𝑇𝑛 → 𝑇 .

(2) Recursively typecheck the function 𝑡0.

(3) Recursively typecheck the arguments 𝑡1, ..., 𝑡𝑛 .

(4) If 𝑡0 is an unresolved overload symbol, recursively typecheck the term 𝑡0 once again.

Second pass.
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(1) Recursively typecheck the function 𝑡0. If 𝑡0 is an unresolved overload symbol, then at this

point it must have been resolved.

(2) Recursively typecheck the arguments 𝑡1, ..., 𝑡𝑛 .

Typechecking of Let-Bindings. Consider the typechecking of a term of the form let𝑥 :𝑆 = 𝑡1 in 𝑡2
labelled with type 𝑇 .

First pass.
(1) Unify the type 𝑇1 of 𝑡1 with a fresh instance of 𝑆 .

(2) Unify the type 𝑇2 of 𝑡2 with the type 𝑇 of the whole let-binding.

(3) Recursively typecheck 𝑡1.

(4) In an environment extended with a binding from 𝑥 to 𝑆 , recursively typecheck 𝑡2.

Second pass.
(1) In an environment extended with a binding from 𝑥 to 𝑆 , recursively typecheck 𝑡2.

(2) Recursively typecheck 𝑡1.

5.2 Formal Presentation of Algorithmic Typechecking
First, we model the typechecking environment, which keeps track of what variables are bound

to—previously, the environment was left implicit.

Definition 5.1 (Typing environments). An environment binds variables as either regular variables
that admit a type scheme 𝑆 , or as overloaded symbols for which there is a set of possible instances 𝐼 .

Set of instances 𝐼 ::= 𝜖 | 𝐼 , (𝑣 : 𝑆)
Typing environment 𝐸 ::= ∅ | 𝐸, 𝑥 : VarRegular(𝑆) | 𝐸, 𝑥 : VarOverloaded(𝐼 )

Definition 5.2 (Mutable state for the algorithmic typechecker). Recall that the state map variable

identifiers to the values they resolve to, e.g. the identifier id of a variable 𝑥id may be mapped

to a value 𝑣 . For algorithmic typechecking, a variable identifier may also be bound to a subset 𝐼

describing remaining possible instances.

Mutable state, extended 𝑠 ::= ∅ | 𝑠 [𝑇 := 𝐷] | 𝑠 [id := 𝑣] | 𝑠 [id := 𝐼 ]

Let us summarize the possible cases for a variable 𝑥id occurring in the program being typechecked.

• The variable is bound as a regular variable with an entry of the form 𝑥 : VarRegular(𝑆) in
the environment in which the variable 𝑥id is typechecked.

• The variable is bound as an overloaded symbol with an entry of the form 𝑥 : VarOverloaded(𝐼 )
in the environment in which the variable 𝑥id is typechecked. In that case, the current state 𝑠

provides information about the status of the resolution of 𝑥id.

– If not resolution attempt has yet been performed on 𝑥id, then the identifier id is not bound

in the state 𝑠 .

– If 𝑥id has been successfully resolved to a value 𝑣 among a set of possible instances 𝐼 , then

the state 𝑠 binds id that this value 𝑣 .

– If a resolution attempt has reduced from 𝐼 to 𝐼 ′ the set of candidate instances for 𝑥id, then
the state 𝑠 binds id to this subset 𝐼 ′, whose cardinality is necessarily greater than one.

Definition 5.3 (First pass).

𝐸; 𝑠1 ⊢fst 𝑡 ⊣ 𝑠2
Under environment 𝐸 and input state 𝑠1, our first

typechecking pass over 𝑡 makes the state evolves to 𝑠2.

The judgment is defined by the rules from Fig. 4.
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⊢lit 𝑣 : 𝑇 ′ 𝑠1 ⊢ unify(𝑇 ′,𝑇 ) ⊣ 𝑠2
𝐸; 𝑠1 ⊢fst 𝑣 :𝑇 ⊣ 𝑠2

FstLiteral

𝐸 (𝑥) = VarRegular(𝑆) 𝑠1 ⊢ unifyScheme(𝑆,𝑇 ) ⊣ 𝑠2
𝐸; 𝑠1 ⊢fst 𝑥 :𝑇id ⊣ 𝑠2

FstVarRegular

𝐸 (𝑥) = VarOverloaded(𝐼 ) 𝑠1 ⊢res (𝑥 :𝑇id ) ∈ 𝐼 ⊣ 𝑠2
𝐸; 𝑠1 ⊢fst 𝑥 :𝑇id ⊣ 𝑠2

FstVarOverloaded

𝑠1 ⊢ checkScheme(𝑆,𝑇1) ⊣ 𝑠2 𝑠2 ⊢ unify(𝑇2,𝑇 ) ⊣ 𝑠3
𝐸; 𝑠3 ⊢fst (𝑢1:𝑇1 ) ⊣ 𝑠4 𝐸, 𝑥 : VarRegular(𝑇1); 𝑠4 ⊢fst (𝑢2:𝑇2 ) ⊣ 𝑠5

𝐸; 𝑠1 ⊢fst (let𝑥 :𝑆 = (𝑢1:𝑇1 ) in (𝑢2:𝑇2 ))
:𝑇 ⊣ 𝑠5

FstLet

𝑠1 ⊢ unify(𝑇, 𝑇0 → 𝑇1) ⊣ 𝑠2 𝐸, 𝑥 : VarRegular(𝑇0); 𝑠2 ⊢fst (𝑢1:𝑇1 ) ⊣ 𝑠3
𝐸; 𝑠1 ⊢fst (𝜆𝑥 :𝑇0 . 𝑢1:𝑇1 )

:𝑇 ⊣ 𝑠3
FstLam

𝑠1 ⊢ unify(𝑇0, 𝑇1 → 𝑇 ) ⊣ 𝑠2 𝐸; 𝑠2 ⊢fst (𝑢0:𝑇0 ) ⊣ 𝑠3 𝐸; 𝑠3 ⊢fst (𝑢1:𝑇1 ) ⊣ 𝑠4
∀𝑥 .∀id.∀𝐼 ′ . ¬

(
𝑢0 = 𝑥id ∧ 𝑠4 [id] = 𝐼 ′

)
𝐸; 𝑠1 ⊢fst (𝑢0:𝑇0 (𝑢1:𝑇1 ))

:𝑇 ⊣ 𝑠4
FstApp1

𝑠1 ⊢ unify(𝑇0, 𝑇1 → 𝑇 ) ⊣ 𝑠2 𝐸; 𝑠2 ⊢fst (𝑢0:𝑇0 ) ⊣ 𝑠3 𝐸; 𝑠3 ⊢fst (𝑢1:𝑇1 ) ⊣ 𝑠4
𝑢0 = 𝑥id 𝑠4 [id] = 𝐼 ′ 𝑠4 ⊢res (𝑥 :𝑇0id ) ∈ 𝐼 ′ ⊣ 𝑠5

𝐸; 𝑠1 ⊢fst (𝑢0:𝑇0 (𝑢1:𝑇1 ))
:𝑇 ⊣ 𝑠5

FstApp2

Fig. 4. Rules for the first typechecking pass.

These rules combine the operations from the ML-typechecking phase (Definition 4.3) and the

rules from declarative symbol resolution (Definition 4.4). Resolutions are first performed on the

way down through the AST. Then, for unresolved functions, an additional resolution attempt is

performed on the way back up from the recursion.

Definition 5.4 (Second pass).
𝑠1 ⊢snd 𝑡 ⊣ 𝑠2 In input state 𝑠1, our second typechecking pass over 𝑡 makes the state evolves to 𝑠2.

The judgment is defined by the rules from Fig. 5.

There are two key aspects to this second pass. First, in the rule SndLet, the subterm 𝑡2 is processed

before 𝑡1. Second, in the rule SndVarForceResolve, the resolution is performed for variables that

were previously unresolved, using the set of remaining candidates that was stored during the first

pass. For a overloaded function name, whose resolution may be attempted twice during the first

phase, it means that a third and last attempt may be performed during the second phase.

Definition 5.5 (Two-pass algorithm). A closed program 𝑡 is typechecked in an empty environ-

ment,and in a state initialized with instances for overloaded symbols. The initial mutable state 𝑠0 is

obtained by internalizing all the types at hand: built-in types, types associated with instances, and

types from user-provided annotatons.
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𝑠 ⊢snd 𝑣 :𝑇 ⊣ 𝑠
SndLiteral

id ∉ dom 𝑠

𝑠 ⊢snd 𝑥 :𝑇id ⊣ 𝑠
SndVarRegular

𝑠 [id] = 𝑣

𝑠 ⊢snd 𝑥 :𝑇id ⊣ 𝑠
SndVarResolved

𝑠1 [id] = 𝐼 ′ 𝑠1 ⊢res (𝑥 :𝑇id ) ∈ 𝐼 ′ ⊣ 𝑠2 𝑠2 [id] = 𝑣

𝑠1 ⊢snd 𝑥 :𝑇id ⊣ 𝑠2
SndVarForceResolve

𝑠1 ⊢snd 𝑡2 ⊣ 𝑠2 𝑠2 ⊢snd 𝑡1 ⊣ 𝑠3
𝑠1 ⊢snd (let𝑥 = 𝑡1 in 𝑡2):𝑇 ⊣ 𝑠3

SndLet

𝑠1 ⊢snd 𝑡1 ⊣ 𝑠2
𝑠1 ⊢snd (𝜆𝑥 :𝑇0 . 𝑡1)

:𝑇 ⊣ 𝑠2
SndLam

𝑠1 ⊢snd 𝑡0 ⊣ 𝑠2 𝑠2 ⊢snd 𝑡1 ⊣ 𝑠3
𝑠1 ⊢snd (𝑡0 (𝑡1)):𝑇 ⊣ 𝑠3

SndApp

Fig. 5. Rules for the second typechecking pass.

In that environment and in that state, the AST of the program is traversed by the first pass,

described by the judgment ∅; 𝑠0 ⊢fst 𝑡 ⊣ 𝑠1. Then, it is traversed by the second pass, described by the

judgment 𝑠1 ⊢snd 𝑡 ⊣ 𝑠2. If these two judgments hold, typechecking is successful.

A variable occurrence with unique identifier id such that 𝑠2 [id] = 𝑣 is resolved to the value 𝑣 .

A variable occurrence with unique identifier id such that id ∉ dom 𝑠2 corresponds to a regular

variable, i.e., bound by a let-binding or a lambda-abstraction.

If the algorithm is interrupted due to the last premise of the rule SndVarForceResolve, namely

𝑠2 [id] = 𝑣 , being not satisfied, then we can report a lack of information for the resolution of the

variable with identifier id.

Theorem 5.6 (Inclusion of algorithmic typechecking into declarative typechecking). If
a program typechecks against our two-pass algorithm 5.5, then it typechecks against our declarative
typechecking from Definition 4.5.

Proof. All unifications performed by the two-pass algorithm can be performed as steps of the

declarative typechecking. □

Theorem 5.7 (Soundness of algorithmic typechecking into declarative typechecking).

If a program typechecks against our two-pass algorithm 5.5, then it typechecks against our declarative
typechecking from Definition 4.5.

Proof. Follows from 5.6 and ??. □

Definition 5.8 (Two-pass algorithm with error-reporting). A variant algorithm for improved error-

reporting is defined as follows.

(1) Execute a modified version of the two-pass algorithm where the rule SndVarForceResolve

is replaced with a variant that does not include its third premise, that is, where resolution is

not forced to succeed. Let 𝑠′ be the final state obtained.
(2) Consider the set of unresolved symbols. A unique identifier id is unresolved in the final state

𝑠′ if and only if 𝑠′ [id] = 𝐼 ′ for some 𝐼 ′. If all symbols are resolved, then typechecking is

successful. Otherwise, apply the following steps.

(3) For every unresolved symbol, test whether it could be resolved using the symbol-resolution

rule of Definition 4.4. (Testing can be interrupted after the first successful resolution.)
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• If resolution succeeds for at least one symbol, let id be the identifier of the first (or any) of

these symbols. Report the message: The symbol id could be resolved but only with more than
two passes, so please provide additional type annotations.

• Othewise, if resolution does not succeed for any symbol, let id be the identifier of the first

(or any) of these symbols. Report the message: The symbol id could not be resolved, so please
provide additional type annotations.

6 OVERLOADED RECORD FIELDS
From the perspective of typechecking, we view all record operations as function calls—like it is

done in Coq for example. Overloaded record fields thus give rise to overloaded functions. In what

follows, we present our encodings, first at a high level, then in more details.

Summary of our encodings. Consider the following type definition. We assume that fields are

sorted alphabetically before typechecking begins.

type t = { mutable f : int; mutable g : int }

Our encodings can be summarized as follows.

r.f __get_f r

r.f <- 3 __set_f r 3

{ f = 3; g = 4 } __make_f_g 3 4

{ r with f = 3 } __with_f r 3

{ r with f = 3; g = 4 } __with_g (__with_f r 3) 4

These encodings are exploited for the purpose of the typechecking only. After resolution of over-

loaded fields, our prototype output an OCaml source code where record fields are renamed in an

unambiguous manner. For example, the field f of the type t is renamed into t_f, and an access of

the form r.f with an expression r of type t becomes r.t_f.

In what follows, we explain the details of the encodings.

Encoding of get operations. For each field, we introduce an overloaded getter function. Consider

for example the field f of type int in the type t. We introduce a special function __get_f and

provide an instance of __get_f of type t -> int. We then encode the expression r.f as the function

call __get_f r.

Encoding of set operations. Similarly, we introduce a special function __set_f, and introduce

an instance of __set_f of type t -> int -> unit. We then encode the expression r.f <- v as the

function call __set_f r v.

Encoding of record construction. For a record type featuring two fields named f and g, we intro-

duce an overloaded function named __make_f_g. Recall that we assume field names to be sorted

alphabetically. The expression{f = 3; g = 4} is interpreted as __make_f_g 3 4. In practice, an

instance of __make_f_g can be resolved in different ways: the type expected by the context might

disambiguate; else there might be only one record definition featuring exactly the two fields f and

g; else, there might be only one matches the types of the arguments provided; else, the user would

need to add a type annotation to force an expected result type.

Encoding of record update. The with-construct with multiple updated fields is treated by the

typechecker as nested unary with-constructs. For example:

{ r with f = 3; g = 4 } (* is encoded as *) { { r with f = 3 } with g = 4 }.
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There remains to explain the encoding for updating one field. Consider the field f of the type t. We

introduce a function named __with_f of type t -> int -> t. Then, we encode r with f = 3 as the

function call __with_f r 3.

Encoding for polymorphic record types. For a polymorphic record type definition, the instances

introduced simply consist of polymorphic functions. For example, consider the definition.

type 'a cell = { hd : 'a; tl : 'a list }

The instance of __get_hd provided for reading the first field has type 'a cell -> 'a.

Advanced examples. Consider the following examples.

type t = { f : int; mutable g : int }

type u = { f : int; mutable g : float }

type v = { f : int; mutable g : float; h : bool }

The code snippets shown below illustrate the resolution at play on several examples exploiting

the types t, u and v defined above.

let r1 (r:t) = r.f (* resolves [f] to be a field of [t] *)

let r2 : t = { f = 3; g = 2 } (* [2] resolves as [int] *)

let r3 = { f = 3; g = (2:float) } (* resolves [r3] to [u] *)

let r4 = { f = 3; g = 2; h = true } (* resolves [r4] to [v] *)

let r5 = r2.g <- 2 (* [r2] has type [t], thus [2] resolves to [int] *)

let r6 = { r2 with g = 2 } (* [r2] has type [t], thus [2] resolves to [int] *)

let r7 = { f = 2; g = 3 } (* rejected: ambiguous *)

7 OVERLOADED DATA CONSTRUCTORS
Motivating example. To illustrate the interest of overloaded constructors, consider the following

definitions describing the grammar of two toy programming languages.

type t = Var of var | Let of var * t * t | Load of t

type u = Var of var | Let of var * u * u | Load of var

The function shown below takes a program from the grammar t into one from the grammar u,

by assigning a name via a let-binding to sub-expressions that appear in load instructions. Observe

how the same constructor names can be used in both embedded languages.

let rec norm (e:t) : u =

match e with

| Var x -> Var x

| Let (x, t1, t2) -> Let (x, norm t1, norm t2)

| Load t1 ->

match t1 with

| Var x -> Load x

| _ -> let x = generate_var_fresh_from t1 in

Let (x, norm t1, Load x)

The point of this example is to illustrate how constructors are resolved. The pattern matching

construct filters an argument e of type t, thus the constructors are resolved at type t. In the branches,

whose expected return type is annotated to be u, the constructors are resolved at type u.
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Typechecking of pattern matching. Here again, we view constructors are functions, and resolve

overloading of constructor applications using the standard mechanism for functions—like Coq does.

Moreover, we perform disambiguation of constructors inside patterns.

Among other properties, we wish the following simple pattern matching expression:

match t0 with x -> t1

to be typechecked in a totally equivalent manner as the corresponding let-binding (as it is the case

in OCaml):

let x = t0 in t1

To achieve this equivalence, we need to typecheck first t0 then t1 in the first pass, then typecheck

t1 then t0 in the second pass. (Recall Section 2.2.) The above observation gives the skeleton of the

typechecking process in case there is a single branch with a trivial pattern. We handle the general

case as described next.

To help the description, consider a representative example.

match t0 with

| p1 -> t1

| p2 -> t2

To typecheck such an expression with an expected result type T, we proceed as follows.

(1) Typecheck the scrutiny t0, obtain a type T_0.

(2) Typecheck the patterns p1 and p2, with expected type T_0.

(3) Typecheck the continuations t1 and t2, with expected type T.

(4) Typecheck again the continuations t1 and t2, with expected type T.

(5) Typecheck again the patterns p1 and p2, with expected type T_0.

(6) Typecheck again the scrutiny t0.

There is an interesting bidirectional flow of type information. The scrutiny may propagate

information, through the patterns, to the variables that are bound in the branches. Reciprocally, the

branches may refine the types of the variables, which may help resolve the pattern constructors,

and ultimately refine the type of the scrutiny. Besides, type information may flow across the various

branches, both for the type T_0 and for the type T. For T_0, the resolution of any of the patterns

during the first pass generally suffices to resolve the constructors in all the other patterns. For T, the

resolution of the type of any of the branches during the first pass suffices to provide information

for typechecking all the other branches with an expected return type.

Advanced examples. To illustrate complex flows of type information, consider the following

examples.

type t = A of t | B of int | C of int

type u = A of u | B of float

let f v =

match v with

| A _ -> ()

| B _ -> ()

| C _ -> () (* the 1st traversal of this pattern forces [v:t] *)

let g v =

match v with

| A (B x) -> ()
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| A (B x) -> ignore (x:int) (* the 2nd traversal of this pattern gives [v:t] *)

| _ -> ()

Examples requiring more than 2 passes. Here again, there exists pattern matching that resolve to

exactly one type, yet for which more than two passes would be necessary to propagate sufficient

information. We make a deliberate choice of limiting the number of phases, both to ensure efficiency

and to allow predictability by the programmer.

The following counter-example reuses the above type definitions of t and u. It does not typecheck

in our system. Indeed, 3 passes would be needed to resolve the type of the constructor A: a first pass

to propagate the type of 𝑥 from the branch into the pattern, a second pass to propagate the type of

𝑥 from the pattern variable to the type of P, and a third pass to propagate the type of P down onto

the constructor A.

type 'a p = P of 'a * 'a

let h v =

match v with

| P (A y, B x) -> (x:int)

Arguably, in the example above, the mental work involved for resolving the type of the constructor A

is nontrivial. In practice, it is generally not hard for the programmer to add just one type annotation

is the right place to ease resolution significantly. For example, if we remove the type annotation

(x : int) that appears in the continuation, and if we add a type annotation (v : int p) on the

argument v of the function h, we would allow all constructors to be trivially resolved on the first

pass.

8 TREATMENT OF POLYMORPHIC HIGHER-ORDER ITERATORS
Consider the mathematical expression

∑
𝑥∈𝐸 (𝑥 + 1). If the variable 𝐸 denotes a set of real numbers,

then the variable 𝑥 obviously stands for a real number, hence the 𝑥 + 1 operation is on real numbers.

More generally, when we have a container data structure at hand (e.g., a list, a set, a map, etc.), we

expect to know the type of its elements. If we iterate over that container, the iteration operation

over this container should be resolved guided by the type of the container, and the type of the

variable that denotes an element should be deduced from the type of the elements of that container.

Our aim is to translate this intuitive recipe into our typing algorithm.

Assume two instances of the map function, one for lists and one for arrays.

val List.map : 'a list -> ('a -> 'b) -> 'b list

val Array.map : 'a array -> ('a -> 'b) -> 'b array

In our prototype implementation, the syntax for registering instances is as follows.

let map = __instance Array.map

let map = __instance List.map

Consider a container d defined as a list of floating-point values, and an operation that invokes

map over d to add one unit to every value in the list.

let d : float list = [3.2; 4.5]

let ex12 = map (fun x -> 2 * x + 1) d

Intuitively, a programmer typechecks this code as follows. Firstly, because map is applied to d of type

list float, it must be the instance of map that operates over lists. Secondly, because the list contains
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elements of type float, the variable x should be of type float. It should follow that 2 * x + 1 is

typechecked as involving operations over float values.

Yet, our algorithm, without additional feature, would fail to typecheck the above example. The

function map is initially unresolved. The first pass of typing on the function (fun x -> 2 * x + 1),

performed without knowledge of x, provides no information whatsoever. Then, the function map is

resolved based on its argument d. During the second pass of typing, we propagate the information

that (fun x -> 2 * x + 1) has a type of the form float -> ?t. Thus, we learn that x is of type

float through the resolution of the call to map. This second pass propagates downward, without any

information at hand about the expected return type ?t for the body x + 1. Thus, the second pass of

the resolution is unable to resolve the type of the addition operator. One could handle this example

with more than two passes, but we would like to avoid more than two passes to keep the time

complexity low and the predictability high. In conclusion, the example ex12, without additional

annotation, cannot be typed by the two-pass algorithm presented so far.

A simple yet unsatisfying work-around would consist in requiring a type annotation of the

argument of the local function, that is, to write (fun (x:float)-> 2 * x + 1). Yet, doing so would

be frustrating because d is a float list, hence its elements are obviously of type float.

To capture this intuition, we introduce a general mechanism for overloaded functions, to distin-

guish arguments treated as input for typing from those treated as output for typing. Arguments in

input-mode guide the resolution. Arguments in output-mode are not processed by the algorithm

until the function call is resolved; at this point, the type expected for every argument is available.

Coming back to our motivating example, the first argument of map should be treated as an

output, whereas the second one should be treated as an input by the typing algorithm. In our

prototype implementation, the syntax for registering the input-ouput modes is by providing a list,

as illustrated below.

let map = __overload [Out; In] (* input-output modes for arguments *)

Unless specified otherwise, all arguments are in input mode. A command such as the above is only

required for overloaded functions that need arguments in output-mode. Typically, all higher-order

iterators over containers would benefit from it. Note that the modes must be the same for all

instances of a same symbol.

When the typing algorithm resolves a function call, it performs the first pass on the input-mode

arguments only, and totally ignores the output-mode arguments. Then, it attempts to resolve the

symbol based on the arguments. If the resolution succeeds, then the first-pass is performed on

the output-mode arguments, and the result type of the function is returned. Else, if there are

several matching instances, the output-mode arguments are ignored, and the type Unresolved is

returned. During the second pass, the context may bring additional information by means of an

expected return type. If the function was previously unresolved, the expected type must suffice

to discriminate between the instances—that is, if the function is not resolved at this stage, the

program is rejected. Otherwise, if the function is resolved with help of the return type, the first pass

is performed on the output-mode arguments.
4
At that point, regardless of whether the function

resolution took place in the first or the second pass, there remains to execute the second pass on

the arguments, to complete the typing process.

The input-output mode mechanism may seem a little technical at first, but it appears necessary to

mimic the intuitive process involved when typing mathematical expressions, without the need for

additional type annotations, and without imposing a specific order to the arguments of a function.

4
It is important not to skip the first-pass of the typing algorithm, even if the expected type is available, because there may

be subterms that do not have an expected return type available, for which the first-pass is essential in order to infer all the

types associated with these subterms.
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This mechanism brings minor complications to the algorithm, yet provides a general solution to

the case of higher-order iterators on containers.

9 DERIVED INSTANCES
The notion of derived instances can be used, for example, to express that as soon as an addition

operator is associated with a type 𝐴, then an addition operator is available on matrices of elements

of type 𝐴. Another example is that of reductions: for any container data structure equipped with a

fold operator, and for any type equipped with a zero constant and an addition operator, one can

derive a sum operator for instances of the container storing values of that type.

In what follows, we present our syntax for derived instances. We also describe the possibility

for packing several instances. For example, for defining the sum operation, we can use a monoid

structure to pack a zero constant and an addition operator into a single addmonoid instance. Then,

we explain how we resolve instances: unlike for traditional typeclasses, our algorithm does not

backtrack during resolution.

A simple derived instance. As first example, assume a type of matrices 'a matrix, and assume

an operation matrix_add that takes as argument an addition operator and two matrices. We can

register an instance for matrix addition as follows.

val matrix_add : ('a -> 'a -> 'a) -> 'a matrix -> 'a matrix -> 'a matrix

(* Register an instance for [+] on the type ['a matrix], for every type

['a] for which there exists an instance of [+] on the type ['a]. *)

let (+) (type a) ((+) : a -> a -> a) : a matrix -> a matrix -> a matrix =

__instance (fun m1 m2 -> matrix_add (+) m1 m2)

Instances with two arguments. As second example, let us show how to define a sum operator on

arrays whose elements have a type that supports a zero constant and an addition operation.

(* Register an instance of [sum] for arrays with [+] and [zero]. *)

let sum (type a) ((+) : a -> a -> a) (zero : a) : a array -> a =

__instance (fun s -> Array.fold (fun acc v -> acc + v) zero s)

Instances with packaged arguments. Let us next revisit the above example by introducing an

additive monoid structure that carries both zero and + . First, we define a record to represent

monoids.

(* Structure to respresent monoids *)

type 'a monoid = { op : 'a -> 'a -> 'a ; neutral : 'a }

Then we introduce an instance for the additive monoid on int. In the definition shown below,

note that the symbols (+) and 0 are resolved, thanks to the type annotation int monoid, to be of

type int->int->int and int, respectively.

(* Register an instance of the additive monoid on [int] *)

let addmonoid : int monoid = __instance { op = (+); neutral = 0 }

We can then revisit our definition on sum to depend on an additive monoid.

(* Register an instance of [sum] for arrays whose elements are equipped

with the additive monoid. *)

let sum (type a) (m : a monoid) : a array -> a =

__instance (fun s -> Array.fold (fun acc v -> m.op acc v) m.neutral s)
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(* Example usage *)

let result1 = sum ([| 4; 5; 6 |] : int array)

Derived instances for monoids. In fact, we can state that for every type equipped with a zero and

a sum operator, an additive monoid can be derived.

(* Register an instance of [addmonoid] for types with a [(+)] and [zero]. *)

let addmonoid (type a) ((+) : a -> a -> a) (zero : a) : a monoid =

__instance ({ op = (+); neutral = zero })

With such an instance, we can remove our previous instance specific to [int monoid] and the

example of result1 would still successfully typecheck: the resolution sum on an int array triggers

the resolution of int monoid, which in terms triggers the resolution of (+) and zero for the type

int.

Amore advanced example: fold andmap-reduce. Let us generalize the definition of the sum function
to all structures that exhibit a fold operator. The construction goes through the intermediate

definition of a mapreduce operator.

(* Example instances of fold operators *)

let fold : ('a -> 'x -> 'a) -> 'a -> 'x array -> 'a = Array.fold_left

let fold : ('a -> 'x -> 'a) -> 'a -> 'x list -> 'a = List.fold_left

(** Register an instance of [mapreduce] derived from [fold] *)

let mapreduce (type t) (type a) (type x)

(fold : (a -> x -> a) -> a -> t -> a)

: (x -> a) -> a monoid -> t -> a =

__instance (fun f m s -> fold (fun acc x -> m.op acc (f x)) m.neutral s)

(* Register an instance of [sum] derived from [fold] and [addmonoid] *)

let sum (type t) (type a)

(addmonoid : a monoid)

(mapreduce : (a -> a) -> a monoid -> t -> a)

: t -> a =

__instance (fun s -> mapreduce (fun x -> x) addmonoid s)

(* Example usage *)

let result2 = sum ([| 4; 5; 6 |] : int array)

An example mathematical formula. Recall our motivating example.∑︁
𝑑∈{𝑖,2𝑖 }

∑︁
𝑘∈[−6,7]

3 · 𝑒 𝑑 ·𝜋
8 ·𝑀2·𝑘2 · 𝑁

Assuming instances of additions, products and exponent operators on integers, complex numbers

and matrices, as well as instance for the integer range constructor, we can typecheck the formula,

without the need for any type annotation inside the formula.

let demo (m:complex matrix) (n:complex matrix) =

bigsum [i; 2*i] (fun d ->

bigsum (range (-6) 7) (fun k ->

3 * (e ^ (d * pi / 8)) * (m ^ (2*k^2)) * n))
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Resolution policy for derived instance. In general, a derived instance takes the form:∀𝐴1..𝐴𝑘 . 𝐷1 =⇒
.. =⇒ 𝐷𝑛 =⇒ 𝑇 , where𝐴𝑖 are type variables, where𝐷 𝑗 represent the premises—that is, the instances
to be resolved for the conclusion to hold—and where 𝑇 denote the type of the instance that can be

constructed.

Consider a type Unresolved(ty,candidates), where the candidates are derived instances with

conclusions 𝑇1, .. 𝑇𝑛 , and where ty is the type 𝑇𝑟 that guides the resolution. The resolution process,

which may be triggered during both passes of our typechecking algorithm, is as follows.

• If more than one type 𝑇𝑖 unifies with 𝑇𝑟 , no resolution takes place.

(In particular, no backtracking is involved.)

• If exactly one type 𝑇𝑖 unifies with 𝑇𝑟 , resolution continues as follows.

(1) The types 𝐴𝑖 are instantiated during the unification of 𝑇𝑖 with 𝑇𝑟 .

(2) Let 𝐷 𝑗 be the premises associated with 𝑇𝑖 .

(3) The typechecker attempts to resolve the premises 𝐷𝑖 , for these types 𝐴𝑖 .

– If all premises 𝐷𝑖 can be resolved, the resolution is complete.

– Else, the type remains Unresolved(ty,candidates).

As an optimization, we can trim the list of instances to Unresolved(ty,[candidate]), where

candidate was the unique remaining candidate. Furthermore, we can specialize the type of this sin-

gle candidate to: 𝐷1 =⇒ .. =⇒ 𝐷𝑛′ =⇒ 𝑇𝑟 , where the 𝐷 𝑗 are instantiated with the aforementioned

types 𝐴𝑖 , and where only the 𝐷 𝑗 that were unresolved are kept. During the second typechecking

pass, the types 𝐴𝑖 may be further refined, allowing the remaining instances 𝐷 𝑗 to be resolved.

10 NON-TREATMENT OF PARTIAL APPLICATIONS
In this section, we explain what problems would arise if we wanted to support overloading and

partial applications at the same time. In the languages C++, ADA, and PVS, which support static

overloading resolution, the syntax of function calls takes the form f(x,y), hence does not allow for

partial applications. In contrast, in a traditional ML-style syntax, the syntax for a function call takes

the form f x y, and the expression f x refers to the partial application of f to a first argument x.

Now, what happens if we overload the name f?

For example, assume sum x1 x2 and sum x1 x2 x3 to be two overloaded functions—both functions

are named sum, the first one expects 2 arguments, whereas the second one expects 3 arguments.

If the programmer writes let y = sum 3 4, there are good chances that the intent is not a partial

application. Yet, without further annotation, there is no way for the typechecker to know the

programmer’s intention and to rule out the possibility that y could be a partial application of the

sum function that expects 3 arguments.

More generally, the experience from other languages, in particular C++, is that programmers

routinely rely on the number of arguments to distinguish between several functions. Hence, if we

were to allow for partial applications, we would significantly decrease the benefits of overloading,

because we would impose on the programmer the writing of additional type annotations for

disambiguation.

For this reason, we decided to not support the traditional ML-syntax for partial applications.

Manual𝜂-expansions, for example fun z -> sum 3 4 z, always remains possible, albeit syntactically

heavy. To mitigate the syntactic overhead, we suggest introducing a new syntactic construct,

with placeholders in the place of non-provided arguments. For example, #(sum 3 4 _) would be

syntax for fun z -> sum 3 4 z. Likewise, #(sum _ 4 5) would be syntax for fun x -> sum x 4 5

and #(sum _ 4 _) syntax for fun x z -> sum x 4 z. Note that in other scenarios, type annotations

might be required to disambiguate between several overloaded functions, e.g., #(f 2 (_:int)).
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In summary, our proposal is to make partial applications explicit. This way, let y = sum 3 4

resolves to an application of the 2-argument sum function, without need for any annotation; and

let g = #(sum 3 4 _) resolves to the partial application of the 3-argument sum function, at the cost of

a very lightweight syntactic overhead—lighter than a type annotation.

11 OPAQUE VS TRANSPARENT TYPES IN RESOLUTION
When a type t is defined as an alias for another type u, it is not obvious whether the overloading

resolution process should treat t and u as identical types, or as distinct types. This issue is well-

known in the context of typeclasses, e.g., Coq provides Typeclasses Transparent and Typeclasses
Opaque commands to control whether a given definition should be transparent or not with respect

to typeclass resolution.

To handle the matter, we choose to follow ML-style practice. If t is defined as u, then t and u

are unifiable and hence interchangeable throughout the scope of t. For example, two instances of

respective type u -> int and t -> intwill always overlap, hence the programmer should introduce

only one of the two instances.

If, however, a type t is introduced as an abstract type, that is, as a type whose implementation is

not revealed (e.g., hidden behind a module type), then t is not unifiable with any other type. In

particular, overloading resolution may discriminate between instances by exploiting the fact that t

and u are different types—even though the type t might have been once realized as u.

12 FUTUREWORK AND CONCLUSION
In future work, we would like to formalize the properties of our algorithm.

Besides, wewould like to polish the error messages, following the ideas from previous work [Char-

guéraud 2015]. Last but not least, we would like to try using overloading at scale, in the context

of ML programming as well as in the context of typechecking common mathematical formulae

parsed using Coq’s support for custom syntax.
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