Characteristic Formulae for the
Verification of Imperative Programs

Arthur Charguéraud

Max Planck Institute for Software Systems

ICFP’11, Tokyo 2011/09/21

Overview

Goal: prove correctness of arbitrarily-complex progams

- take an existing program - specify and verify
written, say, in Caml It using Coq

.8 \f

-

L characteristic formulae J

used to describe the semantics of the code irotie |

Contribution

Last year's paper (ICFP'10) Purely Functional
_ Data Structures
- targets purely-functional programs s hassi. <G

- used CFML to verify half of Okasaki's book g A4

This year's paper (ICFP'11)
— generalizes the results to imperative programs

— Including local reasoning (frame rule)
— Including higher-order imperative functions
- extended CFML to verify, e.g., Dijkstra's shorteath,

Union-Find, iterators on mutable lists, functionghwocal
state, functions in CPS form, recursion throughstioee

Features

Extension to the imperative setting preserves theice
properties of characteristic formulae (CF)

— CF are built compositionaly from the source code

— CF are of linear size w.r.t. the source code

— CF are displayed in a way that resembles source cod
— CF can be manipulated using solely high-level tacti

— CF are not just sound but also complete

Structure of the talk

(1) Introduction: what CF are and what they are not
(2) Technical insight: how to construct CF

(3) Example: verification of Dijkstra's algorithm

CF: what they are

Generation of characteristic formulae
C - [C]

source code without any characteristic formula, expressed in
modification nor annotation higher-order logic usingl,L1],=,...

CF are sound and complete w.r.t. Hoare logic

VH.VH'. [C]HH <= {H}C{H"}

heap predicates application in total correctness
(heap- Prop) higher-order logic Hoare triple

. capturing that, in any heap satisfyiHgthe execution of
the codeC terminates and leaves a heap that satisfies

CF: what they are not

— Not a verification condition generator (VCG)
— the source code Is not annotated with invariants
- Instead, invariants are provided In interactiveoiso

— Not a dynamic logic
- there is no ad-hoc logic construct to embed socwde
- allows to stay in a standard logic and use existods

— Not a deep embedding
— no Inductive datatype used to represent code syntax
— avolds lowlevel details and issues related to binders

— Not a shallow embedding
— Caml functions are not represented as Cog functions
- avoids a mismatch between partial and total funsti7o

Structure of the talk

(1) Introduction: what CF are and what they are not

(2) Technical insight: how to construct CF
— characteristic formula for sequences
- function definitions and function calls
- Integration of the frame rule

(3) Example: verification of Dijkstra's algorithm

CF construction for sequence

Hoare logic rule for sequence
{H} G {H"} {H"} C>{H'}
{H} (Cy; Co) {H'}

Property of characteristic formulae
VH.VH'. [[Cl : CQ]] HH — {H} (Cl : CQ) {HI}

Characteristic formula for sequence
[[01; CQ]] —
ANH.\H'". dH". [C1] H H" N [C] H" H'

Notation system for CF

Definition from previous slide
[C1: C2] =

\NH.\H'. 3H". [C1]H H" A [Co] H" H'

Definition of a Coq notation
(F13F2) =
NAH.\H'. AH". F1 H

Characteristic formula for sec

H" N FoH"H'

uence, revisited

[Cr: o] = |

Ch] 5 [C9]

10

Generalization

Other language constructs are handled in a similaway
[Cr: Co] = [Ch]::[Co]
[while C'; do C5] = While [C';] Do [C5]

It results that
— CF are fully compositional
— CF are easy to generate
— CF are of linear size

Moreover, thanks to tactics, notation need notrdelded

11

Function definitions

For the following definition
function f(z) {C'}
we generate two axioms
Axiom f : func.
Axiom F' : Ve HH'.[C]HH" = App fxHH'.

wherefuncis an abstract type amMppan abstract predicate

func : Type
App : VA.func — A — (Heap — Prop) — (Heap — Prop) — Prop

Characteristic formula for function calls
[f(v)] = AH.AH'. App fvH H'

12

Example of a recursive function

We don't need to add anything to support recursion:
the specification of a recursive functions can berpved
by induction, using Coq's induction principles

Consider the following recursive function

function f(n){ifn > Othen{z =2+ 1; f(n—1)}}

We prove its specification by induction an

Vn.Va.n >0 = Appfn(z —a)(x— a-+n)

13

Frame rule

The frame rule Is not syntax directed; how to | Iit?
{H1} C{H}
{Hy « Hy} C {H{ = Hy}
Insert a predicate at the head of every node iICthe
[Cy; Cs] = local (AH.AH'. ...)

Thislocal predicate supports application of the frame rule at
any time and it can be eliminated by framing the@gnheap

(FH, H|
local F = AMNH.\H'. dH{H{H>. H = Hq{ x Ho
1
H!:Hi*HQ

14

dFE_

Structure of the talk

(1) Introduction: what CF are and what they are not
(2) Technical insight: how to construct CF

(3) Example: verification of Dijkstra's algorithm
— quick overview of the source code
- specification of the algorithm
- Statement of the invariant
- main mathematical lemma
— verification proof script
— example of a proof obligation

15

Source code

let dijkstragse=

let n= Array. lengthg in) mutable data
let b= Array .make n Infinite in / structures
let v= Array .make n false in g
let q= Pqueue.create() In 100
b.(s) <- Finite O; - P
Pqueue .push (s,0) g;
while not (Pqueue.is_empty q) do patterr_l
let (x,dx)= Pqueue.popq in matching
If not v.(xX) then begin

Vv.(X) <- true; higher-order
let update (y,w) = function

let dy=dx+

if (match b.(y) with Inite d ->dy <d

| Infinite -> true)
then (b.(yl=="Finite dy; Pqueue .push (y,dy) q) in
List .iter update g.(x)
end; abstract data
done; structure (argument

b.(e) of the functor)

16

Specification for Dijkstra's shortest path

— Mmathematical grap6&

Theorem dijkstra_spec : O gxyG,
nonnegative_edges G ->

x \in nodes G -> o
y \in nodes G -> — application

(App dijkstra g x y) - _ pre-condition
(g ~> GraphAdjList G) “«
(fund =>[d =dist G x V]

* g ~> GraphAdijList G)

post-condition

Remark: the representation predicate GraphAdjkist |
user-defined predicate (it is not built in the sys)

17

Main invariant

Definition hinv Q B V : hprop :=

g ~> GraphAdjList G G : graph int
* v ~> Array V V : array bool
* b ~> Array B B : array intbar
* q ~> Pqueue Q Q : multiset (int*int)
* [inv Q B V].

Record invQ BV : Prop:={
Bdist: [Ix, x \in nodes G -> V\(x) = true ->

B\(x) = dist G s X;
Bbest: [x, x \in nodes G -> V\(x) = false ->

B\(x) = mininf weight (crossing V Xx);
Qcorr: 0Ox, (x,d)\in Q ->

x\in nodes G /\ [, crossing V x p/\ weight p =d;
Qcomp: [Ox p, x\in nodes G -> crossing V x p ->

[d, (x,d)\in Q A d <= weight p;
SizeV: length V = n;
sizeB: lengthB =n}

18

Main lemma about the invariant

Lemma inv_update : foralLVBQxywdxd
x\in nodes G ->

no reference to charact. formulas

UV

has edge G xyw ->
dy =dx + w ->
Finite dx = dist G s X ->

maths-style reasoning
In terms of multisets

inv (V\(x:=true)) B Q (new_crossing x L V) ->
If len_gt (B\(y)) dy

}

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy N} \uQ) ...
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V).

Proof.

introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V" (V\(x:
lets NegP: nonneg_edges to path Neg.

all the nontrivial reasoning is there

intros z. lets [Bd Bb Hc HK]: Inv z. tests (z = y).
(*casez =y ¥

PR PN HVA A N WY S PSPV malP=h |

forwards~ (px&Px&Wx&MX): (@mininf_finite_inv (
lets Ny: (has_edge_in_nodes_r Ed).
sets p: ((X,y,w)::px).

180 lines across several lemmas
(1/3 of the lines in this lemma)

asserts W: (weight p = dy). subst p. rewrite weight
tests (V'\(y)) as C; case_|If as NIt.

CUTTO. TITAULUT.

(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g

8 seconds to type-check in Coq

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)

19

Proof script for Dijkstra's algorithm

Theorem dijkstra_spec O gxyG, ... (App dijkstrag xy) ...

Proof. Al
xcf. introv Pos Ns De. unfold GraphAdjList at 1 speuahzed CEML

hdata_simpl. xextract as N Neg Adj. xapp. tactic
intros Ln. rewrite <- Ln in Neqg.
Xapps. Xapps. Xxapps. xapps*. xapps. : :
set (data:=fun BV Q =>g ~> Array N * — Ioop Invariant
v ~> Array V * b ~> Array B * q ~> Heap Q).
set (hinv ;= fun VQ =>let '(V,Q) :=VQ in
Hexists B, data BV Q * [inv G ns V B Q (crossing G s V))).

xseq (# Hexists V, hinv (V,\{})). - -
set (W := lexico2 ~—— termination

(binary_map (count (= true)) (upto n)) measure

(binary_map card (downto 0))).
xwhile_inv W hinv. refine (ex_intro' (_,)). — reference to one
unfold hinv,data. hsimpl. applys_eqg~ inv_start 2. mathematic lemma

permut_simpl. intros [V Q]. unfold hinv.
xextract as B Inv. xwhile_body.
unfold data. xapps. xret.

5ed.

— 48 lines of proofs, including 8 lines of invariantkecked in 8 seconds
20

A typical proof obligation

Pos : nonnegative_edges G N h

Ns : s \in nodes G e ypotneses
Ne : e\in nodes G

Neg : nodes_index G n

Adj : forall x y w,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y W
Nx : x \in nodes G
VX @ ~ V\(X)

Dx : Finite dx = dist G s X

Inv:invGnsV BQ (new crossing GsxL'V)
EQ :N\(X)=revL ++(y,w):L

Ew : has_edge G xyw

Ny : y \in nodes G

(Let dy := Ret dx + w in characteristic
Let x38 := App ml_array getby;in formula
If Match /
(Case x38 = Finite d [d] Then Ret (dy '< d) Else
(Case x38 = Infinite Then Ret true Else Done)) -
Then (App ml_array _set b y (Finite dy) ;) ;; pre-condltlon
App push (y, dy) h : Else (Ret tt)) ~
(g ~> Pqueue Q * b ~> Array B * v ~> Array V' * g ~> Array N)
(fun _:unit => hinv' L) +— post-condition

21

Summary

What you need to use CFML

- learn Coq In case you don't know It yet

- learn about the 25 tactics specific to CFML

- take a Caml program and feed it to CFML

— write down the specification of the program

— Wwrite down the invariants of your program (harqssst)
— complete the proofs interactively

Future work

— support modulo and floatting-point arithmetics
— sSupport exceptions, objects and concurrency
- verify the characteristic formula generator itself

22

Further information

Online
— examples at http://arthur.chargueraud.org/softd/cfm
— download CFML (open source)

In the paper
— more on how to build characteristic formulae
— examples of first-class imperative functions

In my thesis
— more on representation predicates (e.g., GraphAgjLi
— proofs of soundness and completeness

Thanks!

23

