
Noname manuscript No.
(will be inserted by the editor)

The Optimal Fixed Point Combinator — Long Version

Arthur Charguéraud

Received: date / Accepted: date

Abstract In this paper, we develop a general theory of fixed point combinators, in

higher-order logic equipped with Hilbert’s epsilon operator. This combinator allows

for a direct and effective formalization of corecursive values, recursive and corecursive

functions, as well as functions mixing recursion and corecursion. It supports higher-

order recursion, nested recursion, and offers a proper treatment of partial functions

in the sense that domains need not be hardwired in the definition of functionals. Our

work, which has been entirely implemented in Coq, unifies and generalizes existing

results on contraction conditions and complete ordered families of equivalences, and

relies on the theory of optimal fixed points for the treatment of partial functions. It

provides a practical way to formalize circular definitions in higher-order logic.

1 Introduction

1.1 Motivation: partial corecursive functions

To the best of our knowledge, there exists, until now, no general approach to formalizing

partial corecursive functions in a simple and satisfying manner. Consider for example

the filter function on infinite streams. Given a predicate P of type A → bool (or

A→ Prop), the filter function f takes a stream s and returns a stream made of the

elements of s that satisfy P . The filter function is partial because it produces a well-

defined stream only when its argument s contains infinitely many items satisfying the

predicate P .

One way to constructively formalize the definition of filter in a logic of total func-

tions is to have f take as extra argument a proof that its argument contains infinitely

many items satisfying the predicate P . In this approach, studied by Bertot [4], the

new filter function does not have the type streamA→ streamA, but instead admits a

Arthur Charguéraud
INRIA Rocquencourt
Domaine de Voluceau
Rocquencourt - B.P. 105
78153 Le Chesnay, France
E-mail: arthur.chargueraud@inria.fr

2

dependent type. Unfortunately, working with dependent types is often associated with

numerous technical difficulties, so we would rather find a solution that does not make

such a heavy use of dependent types.

A different, non-constructive approach to formalizing the filter function was pro-

posed by Matthews [21]. To apply his technique, the filter function first needs to be

turned into a total function, by testing explicitly whether the argument belongs to the

domain. Let “neverP s” be a predicate that holds when the stream s does not con-

tain any item satisfying P . The body of the filter function can be described through a

functional F , as follows.

F f s , let x :: s′ = s in if (neverP s) then arbitrary else

if (P s) then x :: (f s′) else f s′

The filter function f can then be defined as “Fix1 F”, where Fix1 is a combinator that

picks, using Hilbert’s epsilon operator, the unique fixed point of its argument when it

exists, and otherwise returns an arbitrary value. Here, the functional F can be proved to

admit a unique fixed point using a fixed point theorem based on contraction conditions,

devised by Matthews [21]. It follows that f satisfies the fixed point equation f s = F f s

for any stream s.

The main downside of the approach described above is that the domain of the

function needs to be hardwired in its definition. As argued in detail by Krauss [15] for

the case of recursive functions, this requirement is unsatisfactory. First, it requires to

modify the code of the functional, which is inelegant and may cause difficulties when

extracting executable code. Second, it overspecifies the output of the function outside

its domain. Third, it requires to know the domain of the function at the time of its

definition, which is not always practical (see [15]).

The central matter of this paper is to construct a fixed point combinator Fix that

truly supports partial functions. For example, Fix can be directly applied to the func-

tional that describes the original filter function, shown below.

F f s , let x :: s′ = s in if (P s) then x :: (f s′) else f s′

1.2 Fixed point equations with non-unique solutions

Most forms of circular definitions can be captured by (or encoded as) an equation of the

form a = F a. If this fixed point equation admits a unique solution, then the functional

F characterizes a unique circular value. If the equation does not admit any solution,

F is of little interest. But what if the equation admits several solutions?

One typical case of fixed point equations that do not not admit a unique solution

occurs with the circular definitions of partial functions. In a logic of total functions, a

partial function can be represented as a pair of a total function f of type A→ B and

a domain D of type A→ Prop. The partial function (f,D) is said to be a partial fixed

point of a functional F of type (A→ B)→ (A→ B) if the equation f x = F f x holds

for any x satisfying D. (We postpone to §4.3 the discussion of how circular definitions

for partial functions can be expressed as equations of the form a = F a.) A functional F

typically admits several partial functions as fixed point. Can one of them be considered

the “best” fixed point for F?

The starting point of this paper is the observation that the exact answer to this

question is given by the theory of the optimal fixed point developed in 1975 by Manna

3

and Shamir [19], which we have formalized in Coq. A fundamental idea in this theory is

that the only genuine solutions of a fixed point equation are the partial functions that

are consistent with any other fixed point (two functions are consistent if they agree on

the intersection of their domain). Such fixed points are said to be generally-consistent.

The optimal fixed point is defined as the generally-consistent fixed point with the

largest domain. In a sense, the optimal fixed point, which is always unique, is the

most well-defined solution that can be extracted from the fixed point equation without

making arbitrary choices. Since the optimal fixed point captures the maximal amount of

non-ambiguous information contained in the functional F , it can be naturally regarded

as the meaning of the circular definition associated with F . Manna and Shamir [19]

proved that any functional of type (A → B) → (A → B) admits an optimal fixed

point.

Another typical case where fixed point equations do not not admit unique solutions

occurs when working modulo equivalence relations. A value a is a fixed point of F

modulo (≡) if the equation x ≡ F x holds for any value x such that x ≡ a. Moreover,

a fixed point a is said to be the unique fixed point modulo (≡) of a functional F if any

other fixed point x of F is equivalent to a modulo (≡). In this case, even though the

functional F does not admit a unique solution, it admits a unique equivalence class

of solutions. Thus, any element from this class of equivalence can be considered as

representing the meaning of the the circular definition associated with F . The interest

of the definition of “fixed point modulo” is that it allows defining recursive functions on

values compared modulo an equivalence relation without involving an explicit quotient

structure.

1.3 A generic fixed point combinator

In order to unify the various forms of circular definitions, we introduce a generic fixed

point combinator. The basic idea is to pick the “best” fixed point, for a customizable

notion of “best” that depends on the kind of circular definition being targeted. Our

combinator, called Fix, takes as argument an equivalence relation ≡, an order relation

C and a functional F . It then uses Hilbert’s epsilon operator to pick, among the set of

all fixed points modulo ≡ of the functional F , the greatest fixed point with respect to

C (not be confused with the greatest fixed point in the sense of domain theory).

Fix (≡) (C)F , ε x. [greatest (C) (fixed point modulo (≡) F) x]

Appropriate instantiations of the binary relations ≡ and C produce a combinator

for unique fixed point and a combinator for optimal fixed point (possibly modulo an

equivalence relation). If the unique fixed point does not exist, the result of Fix is simply

unspecified.

Now, in order to exploit properties about the value returned by Fix (≡) (C)F , we

need to prove that the functional F indeed admits a greatest fixed point. For a very

large scope of circular definitions, the existence of greatest fixed points can be derived

from one very general theorem, which is developed in this paper. This theorem combines

and generalizes several existing ideas: contraction conditions [12], inductive invariants

[17] and complete ordered families of equivalence [21,10]. Moreover, the corollaries used

in the particular case of partial functions rely on the theory of optimal fixed points [19]

and involves a generalized version of a theorem developed in the context of maximal

inductive fixed points [17,16].

4

The paper is organized as follows. First, we consider a series of examples in order

to illustrate the difficulties involved when reasoning on fixed point equations. Those

examples are used throughout the paper to illustrate various fixed point theorems.

Second, we explain the notions of contraction conditions, inductive invariants, com-

plete ordered families of equivalence, and optimal fixed points, which are the four key

ingredients that this paper builds upon. Third, we describe our generic fixed point

combinator and its specialized versions. We then present our fixed point theorem and

its corollaries. Finally, we investigate, without formal justification, the possibility for

code extraction from circular definitions based on the combinator Fix.

2 Examples of fixed point equations

We consider a series of examples illustrating particular difficulties that may arise when

trying to prove that a given functional admits a unique fixed point. We start with

recursive function definitions, and then consider corecursive definitions of values and

functions. All the examples manipulate natural numbers unless stated otherwise. Note

that curried n-ary functions and mutually-recursive definitions are not discussed here,

as they can be easily encoded into equations of the form a ≡ F a using tuples and

sums.

I The fixed point might not exists or might not be unique Consider the two following

functionals.

F1 f x , 1 + f x F2 f x , f x

The functional F1 does not admit any total function as fixed point. Indeed, no function

f can satisfy the fixed point equation f x = 1 + f x. On the contrary, the functional F2

admits any total function as fixed point. Thus, it is not be possible to consider “the”

fixed point of any of those two functions.

I A partial function is usually not a unique fixed point The following functional defines

the division function between natural numbers.

F3 f (p, q) , if p ≤ q then 0 else 1 + f(p− q, q)

The functional F3 admits as fixed point the function (p, q) 7→ bp
q c defined over the

domain N×N∗. This function is the unique fixed point on that domain, however there

exist other fixed points on other domains. For instance, the function (p, q) 7→ p is a

fixed point on the domain N × {1}. Moreover, any function is a fixed point on the

empty domain.

One way to ensure the existence of a unique fixed point is to modify the original

functional so that it admits a total function as fixed point, by testing whether the

argument belong to the domain:

F ′3 f (p, q) , if q = 0 then arbitrary else if p ≤ q then 0 else 1 + f(p− q, q)

As explained in the introduction, this approach is not entirely satisfying.

Intuitively, there exists a “best” fixed point to the functional F3, which is the func-

tion defined on the domain N×N∗. Ideally, we would like to be able to characterize the

“best” fixed point without providing its domain explicitly at the time of construction

of the fixed point. The theory of optimal fixed points gives a formal meaning to the

notion of “best” fixed point in the general case.

5

I Termination is sufficient, but not necessary Any functional of type (A → B) →
(A→ B) describing a recursive function that terminates on all inputs admits a unique

fixed point. For example, the following functional defines the binary logarithm function:

F4 f x , if x ≤ 1 then 0 else 1 + f bx
2
c

Interestingly, termination is not necessary to the existence of a unique fixed point.

In other words, there exist recursive definitions whose execution does not terminate

but which still admit a unique fixed point, as illustrated by the following two examples.

F5 f x , f x− f x F6 f x , f (x− 1) ∨ (x = 0)

The former admits as unique fixed point the constant function zero, while the latter,

taken from [14], admits as unique fixed point the constant predicate True. Depending on

one’s motivation, it may or may not be interesting to accept these kind of well-defined

yet non-termination circular definitions. Our approach does support them.

I The functional may involve nested recursion Nested recursion occurs when a recur-

sive call is made on a result built from another recursive call. Nested recursion occurs

naturally is the definition of normalization functions [?] and in the computation of

most-general unifiers (see, e.g., [15]). For the sake of presentation, we consider the

simpler example of the nested zero function:

F7 f x , if x = 0 then 0 else f(f(x− 1))

To reason on the functional F7, one needs to prove by induction on x the property “f

terminates and returns zero”. Without such a precise property, there is no way to show

that the outer recursive call to f is made on a value smaller than x. More generally, in

order to handle nested recursion, one must be able to reason about particular properties

of the function in the same time as establishing its termination.

I The functional may involve higher-order recursion Higher-order recursion occurs

when the recursive function is given as argument to a higher-order function. Consider

the example of a function that increments the values stored in the leaves of a finitely-

branching tree:

F8 f x , match x with Leafn 7→ Leaf (n+ 1) | Node l 7→ Node (List.map f l)

With higher-order recursion, showing that recursive calls are made to smaller argu-

ments can be arbitrarily complex, because it involves reasoning on the behaviour of

the higher-order function being applied (in this case List.map).

I Not all corecursive definitions are correct The functional

F9 s , 0 :: (map succ s)

is a correct definition of a corecursive value in the sense that it admits a unique fixed

point, which is the stream of natural numbers “0 :: 1 :: 2 :: 3 :: ..”. More challenging is

the justification of the well-definiteness of Hamming’s sequence:

F10 s , 1 :: merge (map (mult 2) s) (map (mult 3) s)

6

where merge is a function that takes two streams of natural numbers and produces a

new stream by always picking the smallest element from the heads of the two given

streams.

Not all corecursive definitions admit a unique fixed point, as illustrated by the next

two definitions. The first one admits as fixed point any stream that starts with a 0.

The second one does not admit any fixed point at all. Thus, neither of them is a correct

circular definition.

F11 s , 0 :: (tail s) F12 s , 0 :: (map succ (tail s))

I Corecursive functions are not always syntactically productive If a functional is such

that all the recursive calls of a corecursive function are guarded by constructors and

only by constructors, then this functional admits a unique fixed point. For instance,

the functional F13 satisfies this criteria. Its fixed point produces the stream of natural

numbers greater than or equal to n.

F13 f n , n :: f(n+ 1)

However, not all corecursive functions are syntactically-productive in this way. For

example, the following corecursive function produces the stream of prime numbers

greater than a given value n, in increasing order. The difficulty with such a definition

is that the existence of a unique fixed point relies on the fact that there exist infinitely

many prime numbers.

F14 f n , if (is primen) then n :: f (n+ 1) else f (n+ 1)

The generalization of this example is the filter function on infinite streams. Given

a predicate P of type “A→ bool” (or “A→ Prop”), we define:

F15 f s , let x :: s′ = s in if (P s) then x :: (f s′) else f s′

The intended fixed point of F15 is a partial function that accepts a stream containing

infinitely many items satisfying the property P and returns a stream containing all

such items. Circular definitions such as the two above are often said to be mixed

recursive-corecursive, because they require several recursive calls before producing the

head element of their output.

I Corecursive functions may involve nested calls Nested calls can also occur in func-

tions producing corecursive values. For example, the following functional takes a stream

s of the form “s0 :: s1 :: ... :: sn :: ...” and returns the stream “(220
· s0) :: (221

· s1) ::

... :: (22n

· sn) :: ...”.

F16 f s , let x :: s′ = s in (2 · x) :: f (f s′)

While reasoning about a recursive function with nested calls requires the ability

to specify results of the function, reasoning on a corecursive function with nested calls

requires the ability to specify arbitrarily-long prefixes of its outputs. To the extent of

our knowledge, there exists no published technique supporting formal reasoning about

nested corecursion.

A similar need for specifying properties of a value in the same time as proving

well-definiteness can occur in the definition of corecursive values, as illustrated by the

following functional, which admits a unique fixed point only when the constant a is

less than or equal to 1.

F17 s , 1 :: (filter (≥ a) s)

7

I Fixed points might not be computable We end our series of example with two exam-

ples suggesting how exotic functionals can be. The following example is adapted from

[16].

F18 f x , if (∀x. f x = 1) then a else x

If the constant a is equal to 1, then the functional admits exactly two fixed points:

the constant function that always returns 1, and the identity function. Otherwise,

the functional admits only the identity function as fixed point. The second example,

adapted from a program exhibited in [19], is even tricker:

F19 f x , if x ≤ 1 then f 0 + f 1 else x

Suppose there exists a fixed point f of F19. The fixed point equation applied to the

argument 0 produces the equation f 0 = f 0+f 1, which implies that f 1 must be equal

to 0. Similarly, for the argument 1, we get f 1 = f 0 + f 1, hence f 0 must be equal to

0 as well. For any x greater than 1, we have f x = x. Thus, we deduce that the unique

fixed point of F19 is the function “x 7→ if x ≤ 1 then 0 else x”.

The kind of equations needed to solve the fixed point equation suggests the potential

complexity of such a resolution in general. In fact, the fixed point of a computable

functional can be a non-computable function [19].

3 Ingredients

Our proposal builds upon four existing ingredients: contraction conditions, complete

ordered families of equivalences, inductive invariants, and optimal fixed points. The

matter of this section is to present those notions, as well as their associated fixed point

theorems.

3.1 Contraction conditions for recursive functions

Harrison [12] used contraction conditions in order to show the existence of a unique

fixed point for functionals describing recursive functions.

Definition 1 (Contraction condition for recursive functions) Let F be a func-

tional of type (A → B) → (A → B), and < be a well-founded relation on values of

type A. The contraction condition for F with respect to < states:

∀x f1 f2. (∀y < x. f1 y = f2 y) ⇒ F f1 x = F f2 x

This contraction condition ensures the existence of a unique fixed point for F as soon

as the codomain of the recursive function, the type B, is inhabited.

To understand why the contraction condition holds for a (simple) terminating re-

cursive function, consider the following functional F4, which describes a function that

computes the binary logarithm of its argument: F4 f x , if x ≤ 1 then 0 else 1+f bx
2 c.

Let us prove that this functional is contractive. Given arbitrary x, f1 and f2 and the

assumption “∀y < x. f1 y = f2 y”, the proof obligation is:

if x ≤ 1 then 0 else 1 + f1 b
x

2
c = if x ≤ 1 then 0 else 1 + f2 b

x

2
c

8

These are two copies of the body of the functions, with the only difference that recursive

calls are made with a function f1 in the former and with a function f2 in the latter.

Those two functions are not specified, apart from the fact that the two are extensionally

equal on arguments smaller than the current argument x. This hypothesis on f1 and

f2 suffices to prove the contraction condition, as follows. If x is less or equal to 1, then

the goal is trivial. Otherwise, we need to show that f1 bx
2 c and f2 bx

2 c are equal. The

only way to prove this equality is to use the assumption “∀y < x. f1 y = f2 y”. So, we

have to justify the fact that bx
2 c is less than x, which is true because x is greater than

one. The inequation bx
2 c < x indeed captures the fact that the recursive call is made

on a value smaller than the current argument x.

The contraction condition for a given functional F ensures the existence of a unique

fixed point for F , when the codomain of the recursive function, the type B, is inhabited.

This fixed point can be defined by well-founded recursion on the relation <. The details

of the implementation depend on the definition of well-foundedness, but, intuitively, the

fixed point f of F is constructed by taking the fixed point of the following functional:

λf x. F (λy. if y < x then f y else arbitrary)x

This functional can indeed be applied to a well-founded recursion combinator because

a recursive call to f on a value y is only made when y is actually smaller than x. We

can easily verify that f is indeed a fixed point, i.e. that f x is equal to F f x for any x.

By definition of f , it suffices to show that “F (λy. if y < x then f y else arbitrary)x” is

equal to F f x. Since F is contractive, it suffices to show that for any y smaller than

x, the expression “if y < x then f y else arbitrary” is equal to f y, which is true because

y < x.

The contraction condition also guarantees the uniqueness of a fixed point for F .

Indeed, let f1 and f2 be two fixed points. Then we can prove by well-founded induction

on x that f1 x = f2 x. Since f1 and f2 satisfy the fixed point equation, the goal is

equivalent to F f1 x = F f2 x. By the contraction condition, it suffices to check that,

for any y smaller than x, f1 y = f2 y, which is exactly the induction hypothesis.

If the type B is not inhabited, then the contraction condition does not imply the

existence of a unique fixed point. As counter-example, let F be an identity function

of type (nat → False) → (nat → False). Asserting the existence of a fixed point of

type nat→ False would clearly be unsound. Yet, F satisfies the contraction condition.

Indeed, the function f1 quantified at the head of this condition have type nat→ False,

so applying f1 to any natural number produces a proof of False, which can be used

to prove the conclusion F f1 x = F f2 x. Thus, the hypothesis stating that the output

type B must be inhabited is necessary.

Contraction conditions support reasoning on higher-order recursion. They can also

be adapted to n-ary recursive functions and mutually-recursive functions, which can

be encoded into simple functions using products and sums, respectively. The details

of the encoding can be hidden through appropriate reformulations of the contraction

condition and of the fixed point theorem.

Moreover, contraction conditions can be easily extended so as to support partial

functions by restricting arguments to be in a given domain D.

Definition 2 (Guarded contraction condition for recursive functions) The

contraction condition for F guarded by a predicate D states:

∀x f1 f2. D x ⇒ (∀y < x. D y ⇒ f1 y = f2 y) ⇒ F f1 x = F f2 x

9

Note that the hypothesis “Dy” requires the user to justify that recursive calls are made

to values that belong to the domain D. Here, the fixed point theorem states that a

functional F contractive on a domain D admits a unique partial function f as fixed

point on the domain D. This fixed point satisfies the guarded fixed point equation

∀x.D x⇒ f x = F f x.

3.2 Inductive invariants

As Krstić and Matthews [17] point out, the contraction condition for recursive function

fails to handle the case of nested recursion. Consider the nested zero function, described

by the functional

To address this limitation, Krstić and Matthews [17] introduced the notion of in-

ductive invariants and used it to weaken the contraction condition, thereby obtaining

a stronger fixed point theorem able to handle nested recursion.

Definition 3 (Inductive invariants) A binary relation S of type A→ B → Prop is

an inductive invariant for a functional F of type (A → B) → (A → B) if there exists

a well-founded relation < such that

∀x f. (∀y < x. S y (f y)) ⇒ S x (F f x)

The first observation to be made is that if S is an inductive invariant for F , then

any fixed point f of F admits S as post-condition, in the sense that S x (f x) holds

for any x. Indeed, if f is fixed point, then the property S x (f x) can be proved by

well-founded induction on x. As f is a fixed point, it suffices to show S x (F f x), which

follows directly from the fact that S is an inductive invariant and from the induction

hypothesis.

Krstić and Matthews [17] further observed that if S is an inductive invariant for

F , then one can safely assume f1 to admit S as post-condition while proving the

contractivity of F . Formally, the restricted contraction condition for a functional F ,

with respect to an inductive invariant S, is similar to the contraction condition except

that it includes an extra hypothesis about the function f1. This condition guarantees

the existence and uniqueness of a fixed point.

Definition 4 (Restricted contraction condition for recursive functions) The

contraction condition for F restricted to the inductive invariant S is:

∀x f1 f2. (∀y < x. f1 y = f2 y) ∧ (∀y. S y (f1 y)) ⇒ F f1 x = F f2 x

3.3 Complete ordered families of equivalences

The contraction conditions described so far can only deal with recursion, for the basic

reason that recursive calls must be applied to smaller values with respect to a well-

founded relation. In order to deal with corecursive functions, Matthews [21] introduced

a different form of contraction conditions stated in terms of families of converging

equivalence relations. Di Gianantonio and Miculan [10] slightly simplified this structure,

calling it complete ordered families of equivalence, abbreviated as “c.o.f.e.”. We follow

their presentation.

10

The contraction condition for a functional F of type (A → A) → A is stated in

terms of a family of equivalence relations over values of type A, written
i
≈, indexed

with values of an ordered type I. The proof of existence of a unique fixed point for

F requires the ordered families of equivalence to satisfy a notion of completeness.

Intuitively, completeness asserts that all coherent sequences of values of type A admit

a limit. The following definitions formalize the notion of complete ordered families of

equivalences. Note: the definitions of coherence and of completeness can be skipped

upon first reading.

Definition 5 (Ordered families of equivalence) The structure (A, I,≺,
i
≈) is an

ordered family of equivalences when ≺ is a well-founded transitive relation over the

type I and
i
≈ is an equivalence relation over the type A for any i of type I. Thereafter,

the equivalence relation obtained as the intersection of all the relations
i
≈ is written

≈.

Definition 6 (Coherent sequences) A sequence ui of values of type A indexed by

elements of type I is said to be coherent if for any indices i and j such that i ≺ j the

values ui and uj are equivalent at level i, that is, ui
i
≈ uj . More generally, the sequence

ui is said to be coherent on the domain K, for a predicate K of type I → Prop, when

the property ui
i
≈ uj holds for any i and j satisfying K and such that i ≺ j holds.

Definition 7 (Completeness for an ordered family of equivalences) An or-

dered family of equivalences (A, I,≺,
i
≈) is said to be complete if, for any downward-

closed domain K (i.e., such that i ≺ j and K j imply K i) and for any sequence ui

coherent on the domain K, the sequence ui admits a limit l on the domain K, in the

sense that ui
i
≈ l holds for any i satisfying K.

A basic example of c.o.f.e. is the one associated with streams. In this case, I is the

set of natural numbers ordered with <. The relation
i
≈ relates any two streams that

agree up to their i-th element. The intersection ≈ of the family of relations (
i
≈)i∈N

corresponds to stream bisimilarity. Completeness for this particular ordered family of

equivalences asserts that given a sequence of streams (si)i∈N such that for all j and for

all i less than j the stream si agrees with the stream sj up to index i, there exists a

limit stream l such that for any i the stream si agrees with l up to index i. Intuitively,

(si)i∈N describes a sequence of streams where each stream refines the previous one by

fixing one additional item, and l is the limit stream obtained by diagonalization, i.e.

the i-th element of l is the i-th element of the i-th stream. This construction of a c.o.f.e.

for sterams can be easily generalized to coinductive trees.

Complete ordered families of equivalences are used to state the following sufficient

condition for the existence of a unique fixed point for F modulo ≈.

Definition 8 (Contraction condition for c.o.f.e.’s) The functional F is contrac-

tive w.r.t. a complete ordered family of equivalences (A, I,≺,
i
≈) when

∀x y i. (∀j ≺ i. x
j
≈ y) ⇒ F x

i
≈ F y

11

In the particular case of streams, the contraction condition expresses the fact that if

x and y are two streams that agree up to the index i − 1, then F x and F y agree

up to the index i. Intuitively, this property captures the idea that the application of

F is productive. More generally, the contraction condition asserts that, given any two

values x and y, the functional F is such that F x and F y are always closer to one

another than x and y are, for an appropriate distance.

Di Gianantonio and Miculan [11] have described a general theory, expressed in cat-

egories of sheaves, in which complete ordered families of equivalences are simply par-

ticular cases of sheaves on well-founded topologies. Their theory also covers the case of

well-founded recursion, described by functionals of type ∀x :A. ({y | y < x} → B)→ B.

However, di Gianantonio and Miculan do not cover the important case of nested calls,

nor do they explain how the contraction condition for recursive functions described by

functionals of type (A→ B)→ (A→ B) fits their model.

3.4 Optimal fixed point

As explained in the introduction, Matthews [21] relied on the combinator Fix1 to pick

the unique fixed point of a functional, whenever such a fixed point exists.

Definition 9 (The unique fixed point combinator)

Fix1 F , ε x. (∀y. y = F y ⇐⇒ y = x)

Given a function F , one can always construct the term Fix1 F . If the functional F is later

shown to be contractive, then it can be deduced that Fix1 F is actually a fixed point

for F , i.e. that the fixed point equation “Fix1 F = F (Fix1 F)” holds. Unfortunately,

the combinator Fix1 cannot be used for partial functions, because fixed point equation

for partial functions generally admit several solutions.

One idea, put forward by Krstić and Matthews [17] and investigated in more details

by Krstić in [16], is that there is always a “best” domain for any functional describing

a terminating recursive function, and that, on this domain, there exists a unique fixed

point. The formalization of this idea relies on the notion of inductive fixed point.

Definition 10 (Inductive fixed point) f is an inductive fixed point of a functional

F on a domain D if there exists a well-founded relation < such that:

∀g x. D x ⇒ (∀y < x. D y ⇒ f y = g y) ⇒ f x = F g x

Interestingly, an inductive fixed point on a given domain is always the unique fixed

point on that domain. Moreover, any functional admits a maximal inductive fixed point,

which is the inductive fixed point with the largest domain. This theorem, which does

not appear to have ever been mechanized, may suggest the definition of a maximal

inductive fixed point combinator. Such a combinator would be useful for terminating

functions. However, it would not accommodate corecursive functions.

In this paper, we invoke an older and much more general theorem in order to

formalize the notion of “best” fixed point. The theorem, due to Manna and Shamir

[19], asserts the existence of an optimal fixed point for any functional describing a

partial function. While it was initially designed for recursive programs, the theorem

turns out to apply to a much larger class of circular definitions.

12

Before we can state the theorem formally, we need to introduce several definitions

in order to formalize the definition and the properties of partial functions in a theory of

total functions. Throughout the paper, we let P ⊆ P ′ be an abbreviation for ∀x. P x⇒
P ′ x and let f =P f ′ be an abbreviation for ∀x. P x⇒ f x = f ′ x.

Definition 11 (Representation of partial functions) A partial function f̄ of type

A ↪→ B is a pair (f,D) made of a total function f of type A→ B and of a domain D

represented as a predicate of type A→ Prop. Throughout the rest of the paper, we use

overlined symbols to denote partial functions and we write dom(f̄) the right projection

of f̄ and write f (without an overline) the left projection of f̄ .

Definition 12 (Equivalence between partial functions) Two partial functions f̄

and f̄ ′ are equivalent, written f̄
↪→
= f̄ ′, if they have the same domain, i.e. dom(f̄) =

dom(f̄ ′) and if they are extensionally equal on that domain, that is, f =dom(f̄) f
′.

Definition 13 (Consistency between partial functions) Two partial functions f̄

and f̄ ′ are consistent, written f̄ O f̄ ′, if they agree on the intersection of their domain,

that is, if f =P f ′ for P = dom(f̄) ∩ dom(f̄ ′).

Definition 14 (Partial order on partial functions) A partial function f̄ ′ extends

a partial function f̄ , written f̄ v f̄ ′, if the domain of f̄ is included in the domain of f̄ ′

and if f and f ′ are extensionally equal on the domain of f̄ . Formally:

f̄ v f̄ ′ , dom(f̄) ⊆ dom(f̄ ′) ∧ f =dom(f̄) f
′

Remark: the antisymmetry property associated with the order on partial functions

states that if both f̄ extends f̄ ′ and f̄ ′ extends f̄ then the two functions f̄ and f̄ ′ are

equivalent, i.e. f̄
↪→
= f̄ ′. The next two definitions formalize the notion of optimal fixed

point.

Definition 15 (Generally-consistent fixed points) Let f̄ be a fixed point mod-

ulo
↪→
= (the equivalence between partial functions) of a functional F of type (A ↪→

B) → (A ↪→ B). The fixed point f̄ is said to be a generally consistent, written

generally consistentF f̄ , if any other fixed point f̄ ′ of F modulo
↪→
= is consistent with f̄ .

In other words, a generally-consistent fixed point f̄ of a functional F is such that,

for any other fixed point f̄ ′ of F , the equation f ′(x) = f(x) holds for any x that

belongs both to the domain of f̄ and that of f̄ ′. The contrapositive of this statement

asserts that the domain of a generally-consistent fixed point cannot include any point

x whose image is not uniquely determined by the fixed point equation for F . Thus,

as argued by Manna and Shamir [19], generally-consistent fixed points are the only

genuine solutions of any circular function definition.

Definition 16 (Optimal fixed point) A partial function f̄ of type A ↪→ B is the

optimal fixed point of a functional F of type (A ↪→ B)→ (A ↪→ B) if it is the greatest

generally-consistent fixed point of F , with respect to the partial order v on the set of

partial functions.

In short, the optimal fixed point f̄ of a functional F is the generally-consistent fixed

point of F with the largest domain. This means that every other generally-consistent

fixed point of F is a restriction of f̄ to a smaller domain.

13

Theorem 1 (Optimal fixed point theorem) For any functional F of type (A ↪→
B)→ (A ↪→ B), where B is inhabited, F admits an optimal fixed point.

Note that the optimal fixed point is always unique modulo the equivalence between

partial functions. The optimal fixed point theorem appears to have had relatively little

impact as a theory of circular program definitions, probably because optimal fixed

points are not computable in general. Yet, as a foundation for a theory of circular

logical definitions, we find the optimal fixed point theorem to be the tool of choice.

3.5 Contributions of this paper

Our contribution can be summarized as follows.

1. By spotting the interest of optimal fixed points for logical circular definitions and

by conducting the first formal development of the optimal fixed point theorem, we

obtain a proper treatment of partiality for recursive and corecursive functions in

higher-order type theory.

2. Using invariants to generalize existing results on complete ordered families of equiv-

alences, we provide the first general method for justifying the well-definiteness

of nested corecursive functions. The use of invariants also supports reasoning on

certain forms of corecursive values that could not be formalized with previously-

existing contraction conditions.

3. By showing that contraction conditions for recursive functions can be obtained

as a particular instance of contraction conditions for complete ordered families of

equivalences, even when nested calls are involved, we are able to offer a unified

presentation of a number of fixed point theorems based on contraction conditions.

The result of our work is a general approach to the definition of recursive, corecur-

sive and mixed recursive-corecursive values. It supports nested recursion, higher-order

recursion, and offers a proper treatment of partial functions in the sense that domains

need not be hardwired in the definition of the functionals. Curried n-ary functions

and mutually-recursive definitions are also supported. Our results have all been imple-

mented in Coq and can be conveniently used in practice to formalize a large scope of

circular definitions.

4 The greatest fixed point combinator

We now introduce a greatest fixed point combinator and show how to instantiate it as

a unique fixed point combinator and as an optimal fixed point combinator.

4.1 Definition of the greatest fixed point combinator

The idea behind the greatest fixed point combinator Fix is very simple. Our goal is to

construct a fixed point modulo≡ of a given functional F . Since several fixed point might

exist, we pick the “best” fixed point, for a suitable notion of “best” described through an

order relation written C. The combinator Fix takes as argument an equivalence relation

≡ and a partial order C, both defined on values of an inhabited type A. It then takes a

14

functional F of type A→ A and returns the greatest fixed point of F modulo ≡ with

respect to C, if it exists. Its definition relies on the predicate “greatest ≺ P x”, which

asserts that x satisfies P and that x is greater than any other value satisfying P , with

respect to ≺.

Definition 17 (The greatest fixed point combinator)

Fix (≡) (C)F , ε x. [greatest (C) (fixed point modulo (≡) F) x]

The application of the epsilon operator requires a proof that the type A is inhabited.

We encapsulate this proof using an inductive data type Inhabited, of sort Type→ Prop.

(Note that proofs of type InhabitedA need not be manipulated explicitly, thanks to the

use of Coq’s typeclass facility.) Thus, Fix has type:

∀A. (InhabitedA)→ (A→ A→ Prop)→ (A→ A→ Prop)→ (A→ A)→ A

4.2 Instantiation as a unique fixed point combinator

The unique fixed point combinator Fix1, useful for circular definitions that do not

involve partial functions, can be defined in terms of Fix. To that end, it suffices to

instantiate both ≡ and C as the equality between values of type A.

Definition 18 (Another unique fixed point combinator)

FixValF , Fix (=) (=)F

We thereby obtain a combinator that picks the unique fixed point when it exists. FixVal

is provably equivalent to the definition ε x.(∀y. y = F y ⇐⇒ y = x).

More generally, we can construct a combinator for unique fixed point modulo an

equivalence relation ∼, simply by instantiating both ≡ and C as ∼.

Definition 19 (Combinator for unique fixed point modulo)

FixValMod (∼)F , Fix (∼) (∼)F

The particular combinator of FixVal is in fact defined as “FixValMod (=)”.

4.3 Instantiation as an optimal fixed point combinator

We now construct a combinator that returns the optimal fixed point of a functional F

of type (A → B) → (A → B). First, we need to transform F as a functional between

partial functions, of type (A ↪→ B)→ (A ↪→ B), so as to be able to invoke the theory

of optimal fixed points. Second, we need to find a suitable instantiation of the relation

C to ensure that the greatest fixed point with respect to C is exactly the optimal fixed

point. We start with the first task.

Definition 20 (“Partialization” of a functional) A functional F of type (A →
B) → (A → B) can be viewed as a functional of type (A ↪→ B) → (A ↪→ B), i.e. as a

functional on partial functions, by applying the following “partialization” operator:

partializeF , λ(f,D). (F f,D)

15

Definition 21 (Partial fixed points) Given a functional F of type (A → B) →
(A→ B), we say that f̄ is a partial fixed point of F if and only if it is a fixed point of

the functional “partializeF” modulo
↪→
=.

There exists another, equivalent definition of partial fixed point (e.g., [16]). Recall

that f =D f ′ is an abbreviation for ∀x.D x⇒ f x = f ′ x.

Definition 22 (Alternative definition of partial fixed points) A partial function

(f,D) is a partial fixed point of F if and only if the equation F f ′ =D f ′ holds for every

function f ′ such that f ′ =D f .

Remark: one needs to quantify over f ′ to ensure that the computation of “F f” does

not depend on the values produced by f outside the domain D.

Our next step is to define a relation�F over the set of fixed points of “partializeF”

so that the greatest element of �F is exactly the optimal fixed point of F . On the

one hand, the optimal fixed point is a generally-consistent fixed point of “partializeF”,

moreover it is the greatest with respect to v. On the other hand, the combinator

Fix produces a fixed point f̄ of “partializeF” which is the greatest with respect to

the relation �F , meaning that any other fixed point f̄ ′ satisfies f̄ ′ �F f̄ . To ensure

that f̄ is the optimal fixed point, we need to ensure (1) that f̄ is generally consistent,

meaning that it is consistent with any other fixed point and (2) that f̄ extends any

other generally-consistent fixed point.

Definition 23 (Partial order selecting the optimal fixed point)

f̄ ′ �F f̄ , consistent f̄ f̄ ′ ∧ (generally consistentF f̄ ′ ⇒ f̄ ′ v f̄)

Given a functional F of type (A→ B)→ (A→ B), the value returned by “Fix (
↪→
=

) (�F) (partializeF)” is a function of type A ↪→ B. Since we are not interested in the

domain of the resulting function but only in its support, of type A → B, we retain

only the first projection.

Definition 24 (The optimal fixed point combinator)

FixFunF , π1(Fix (
↪→
=) (�F) (partializeF))

The following theorem justifies the fact that the above definition indeed constructs

the optimal fixed point. It relates the definition of the optimal fixed point, which is the

greatest generally-consistent fixed point of F with respect to v, with the definition of

FixFun, which picks the greatest fixed points of “partializeF” modulo
↪→
= with respect

to �F .

Theorem 2 (Correctness of the optimal fixed point combinator) Given a func-

tional F of type (A → B) → (A → B) and a partial function f̄ of type A ↪→ B, the

following two propositions are equivalent:

1. greatest (v) (generally consistentF) f̄

2. greatest (�F) (fixed point modulo (
↪→
=) (partializeF)) f̄

This ends our construction of the optimal fixed point combinator. The construction

can be easily generalized to the case where values from the codomain B are compared

with respect to an arbitrary equivalence relation ≡ rather than with respect to Leibniz’

equality. In this case, equivalence between partial functions, written
↪→≡ , is defined in

16

terms of the predicate f≡P f
′ which compares result modulo ≡, and which is defined

formally as ∀x. P x ⇒ f x ≡ f ′ x. The construction results in a more general combi-

nator, called FixFunMod, which takes an equivalence relation ≡ and a functional F as

argument and returns a fixed point which is optimal modulo
↪→≡ .

5 The general fixed point theorem and its corollaries

5.1 A general contraction theorem for c.o.f.e.’s

Our fixed point theorem for c.o.f.e.’s strengthens the result obtained in [21] and later

refined in [10], adding, in particular, support for nested calls. Our contraction condition

generalizes the contraction condition for c.o.f.e.’s with an invariant, in a somewhat

similar way as in the restricted contraction condition.

Definition 25 (Contraction condition) Given a c.o.f.e. (A, I,≺,
i
≈), a functional

F of type A → A is said to be contractive with respect to an invariant Q of type

I → A→ Prop when

∀x y i. (∀j ≺ i. x
j
≈ y ∧ Qj x ∧ Qj y) ⇒ F x

i
≈ F y ∧ Qi (F x)

Note that contrary to the combined contraction condition from §3.2, the invariant Q

is assumed both for x and y and not just for x. Assuming Q only for x would lead to

a too weak condition.

Our fixed point theorem asserts that a given functional admits a unique fixed

point as soon as it is contractive with respect to a continuous invariant. The notion of

continuity that we introduce for this purpose is defined as follows. The notions of limits

and of downward-closedness used below are those introduced in §3.3. The definition of

continuity can be skipped in a first reading.

Definition 26 (Continuity of an invariant) Given a c.o.f.e. (A, I,≺,
i
≈), an invari-

antQ is said to be continuous if the following implication holds for any downward-closed

domain K, for any sequence (ui)i:I and for any limit l.

(∀i.K i⇒ ui
i
≈ l) ∧ (∀i.K i⇒ Qi (ui)) ⇒ (∀i.K i⇒ Qi l)

We can now state the general fixed point theorem for c.o.f.e.’s.

Theorem 3 (Fixed point theorem for c.o.f.e.’s) If (A, I,≺,
i
≈) is a c.o.f.e. and

if F is a functional of type A → A contractive with respect to a continuous invariant

Q in this c.o.f.e., then F admits a unique fixed point x modulo ≈. Moreover, this fixed

point x is such that the invariant Qix holds for any i.

The proof of this theorem is fairly involved. The fixed point is constructed as a limit of

a sequence, defined by well-founded induction on ≺. Each element of this sequence is

itself defined in terms of a limit of the previous elements in the sequence. Moreover, the

convergence of all those limits depend on the fact that the i-th value of the sequence

satisfies the invariant at level i, that is, the predicate Qi. The details of the proof are

described in the long version [8].

17

5.2 Fixed point theorem for corecursive values

By the above theorem, when F is a contractive functional, it admits a unique fixed

point. In this case, it can thus be proved that the unique fixed point combinator FixVal

picks a fixed point of F . More generally, when F is a contractive functional modulo ≡,

it admits a unique fixed point modulo ≡. The combinator FixValMod picks a value

which is a fixed point of F . Those results are captured by the following theorem.

Theorem 4 (Fixed point theorem for FixValMod)

x = FixValMod (≡)F

(A, I,≺,
i
≈) is a c.o.f.e.

≡ is equal to
⋂

i:I

i
≈

F is contractive w.r.t. Q

Q is continuous

⇒
{
x ≡ F x
∀i. Q i x

Compared with previous work, the use of an invariant in the contraction condition

makes it strictly more expressive. Intuitively, while reasoning about a recursive function

with nested calls requires the ability to specify results of the function, reasoning on

a corecursive function with nested calls requires the ability to specify arbitrarily-long

prefixes of its outputs. The invariant Q describes the specification of those prefixes.

Example 3, which appears further on, illustrates this fact.

Let us first start with simpler examples. We define functions on streams, using the

c.o.f.e. for streams introduced in §3.3, where
i
≈ captures equality between streams up

to length i and where ≡ corresponds to stream bisimilarity.

Example 1 (A simple well-defined stream) The stream of natural numbers sN
can be defined as “FixValMod (≡)F9”, where “F9 s , 0 :: (map succ s)”. The fixed

point theorem can be invoked to establish the fixed point equation sN ≡ F9 sN. By

definition of F9, it is equivalent to the equation sN ≡ 0 :: (map succ sN), which can be

used to “unfold” the definition of sN at any time. For example, three such unfolding

operations produce the equation sN ≡ 0 :: 1 :: 2 :: 3 :: (map succ sN).

In order to invoke the fixed point theorem, we first need to specify the invariant Q.

In this simple example, we define it simply as the predicate that always returns True.

This degenerated invariant is clearly continuous. The second step is to prove that the

functional “F9” is contractive.

∀s1 s2 i. (∀j ≺ i. s1
j
≈ s2) ⇒ F9 s1

i
≈ F9 s2

To prove this goal, it suffices to show (0 :: map succ s1)
i
≈ (0 :: map succ s2). If i is equal

to zero, the goal is trivial. Otherwise, we need to prove (map succ s1)
i−1
≈ (map succ s2).

This fact follows directly from s1
i−1
≈ s2, which comes from the hypothesis on s1 and s2.

Example 2 (A stream that is not well-defined) To see a counter-example where

the contraction condition is not satisfied, recall the invalid circular definition F11 s ,
0 :: (tail s). To prove the contraction condition associated with the functional F11, we

would need to prove that (tail s1)
i−1
≈ (tail s2), which would in turn require a proof of

s1
i
≈ s2. The assumption that s1

j
≈ s2 holds for any j < i is clearly too weak to derive

18

this conclusion. Intuitively, the fact that the proof fails because s1 and s2 are not know

to be similar beyond the rank “i − 1” translates the idea that the functional is not

“productive” enough.

Example 3 (A stream that requires an invariant) As a third and last example,

we consider the circular definition associated with the functional F17 s , 1 :: (filter (≥
a) s), where a is a value less or equal to 1. Justifying the existence of a unique fixed

point for s requires the use of an invariant specifying some property of the resulting

stream. For example, let us specify that all the values in the stream described by F17

are greater than or equal to 1. More precisely, the define Q such that “Qi s” holds if

the i first elements of s are greater than or equal to 1. The contraction condition is:

∀s1 s2 i. (∀j ≺ i. s1
j
≈ s2 ∧ Qj s1 ∧ Qj s2) ⇒ F17 s1

i
≈ F17 s2 ∧ Qi (F s1)

For the first part of the conclusion, we need to show “filter (≥ a) s1” and “filter (≥ a) s2”

similar up to index “i−1”. By assumption, both s1 and s2 contain only element greater

than or equal to 1 up to index “i− 1”, and s1 and s2 are equal up to index “i− 1”, so

the result holds by transitivity, as follows:

filter (≥ a) s1
i−1
≈ s1

i−1
≈ s2

i−1
≈ filter (≥ a) s2

For the second part of the conclusion, we need to show that “1 :: (filter (≥ a) s1)”

contains only element greater than or equal to 1 up to index i, knowing that “s1” itself

contains only such items up to index “i − 1”. To that end, it suffices to check that,

under this assumption, “filter (≥ a) s1” is in fact equal to s1 up to length “i− 1”.

The fixed point theorem also tells us that the fixed point of F17 satisfies the invari-

ant “Qi” for all i. Here, it means that the fixed point contains only elements greater

than or equal to 1 on its i first elements, for any value of i. We could in fact have used

a more precise invariant throughout the proof, defining Q such that “Qi s” holds if the

i first elements of s are exactly equal to 1. In this case, the fixed point theorem would

have let us conclude that the fixed point of F17 contains only values equal to 1.

5.3 Fixed point theorem for recursive functions

The goal of this section is to build a c.o.f.e. that can be used to prove that a functional F

of type (A→ B)→ (A→ B) describing a terminating recursive function on a domain

D admits a unique fixed point of type A → B. This relatively simple construction,

which allows to unify the various forms of contraction conditions, does not seem to

have appeared previously in the literature.

Theorem 5 (c.o.f.e. for recursive functions) Let ≡ be an equivalence relation of

type A→ A→ Prop, let < be a well-founded relation of type A→ A→ Prop, and let D

be a domain of type A → Prop. Then, the structure (A → B,A,<+,
x
≈) is a complete

ordered family of equivalences, where (
x
≈)x:A is a family of equivalence relations on

values of type A→ B defined as follows:

f1
x
≈ f2 , ∀y <∗ x. D y ⇒ f1 y ≡ f2 y

Above, <+ is the transitive closure of < and <∗ its reflexive-transitive closure.

19

The main difficulty in this proof is to establish completeness. Given a sequence u

of functions of type A → B, indexed with values of type A, we need to show that if

this sequence is coherent then it admits a limit. This limit function can be defined

by diagonalization, as “λx. u x x”. The proof that it is indeed a limit is relatively

straightforward.

In this particular c.o.f.e., the contraction condition can be reformulated in a way

which, in practice, is equivalent to the conjunction of the propositions “S is an inductive

invariant for F” and “F satisfies the restricted contraction condition with respect to

S” (Definition 3 and Definition 4).

Theorem 6 (Contraction condition for recursive functions) Let D be a domain

of type A→ Prop and let S be a post-condition of type A→ B → Prop compatible with

≡, in the sense that if “S x y1” holds and if “y1 ≡ y2” then “S x y2” also holds. Then,

in the c.o.f.e. for recursive functions, a functional F is contractive w.r.t. the invari-

ant “λx f. D x ⇒ S x (f x)” as soon as F satisfies the following combined contraction

condition on the domain D with respect to < and S modulo ≡:

∀x f1 f2. D x ∧ (∀y < x. D y ⇒ f1 y ≡ f2 y ∧ S y (f1 y))

⇒ F f1 x ≡ F f2 x ∧ S x (F f1 x)

Remark: we need not include an assumption S y (f2 y) because it would be redundant

with S y (f1 y). Indeed, we already have f1 y ≡ f2 y and S is compatible with ≡. A

corollary, not shown here, to the general fixed point theorem (Theorem 22) can be

stated for this reformulated contraction condition. The conclusion of this corrolary

asserts the existence of a partial fixed point f modulo ≡ on the domain D. Moreover,

this fixed point f satisfies the post-condition ∀x.D x ⇒ S x (f x). More precisely, the

general fixed point theorem (Theorem 22) can be specialized to the particular case

of recursive functions as follows. Recall that “f1 ≡D f2” stands for the proposition

∀x.D x⇒ f1 x ≡ f2 x.

Theorem 7 (Fixed point theorem for recursive functions) Let ≡ be an equiv-

alence relation, < be a well-founded relation, D be a domain, S be a post-condition

compatible with ≡. If the functional F satisfies the combined contraction condition on

the domain D with respect to < and S modulo ≡, then F admits a unique partial fixed

point f modulo ≡D. Moreover, this fixed point f satisfies the post-condition S on the

domain D, that is, ∀x.D x⇒ S x (f x).

The next key theorem in our development establishes that the partial fixed point

(f,D) is a generally-consistent fixed point of the functional “partializeF”.

Theorem 8 (General consistency for recursive fixed points) Under the hy-

potheses of the previous theorem, the partial function (f,D) is a generally-consistent

fixed point of the functional “partializeF”.

The proof of this theorem is quite technical. It reuses and generalizes several ideas

coming from the proof that inductive fixed points are generally-consistent [16].

Combining the existence of a generally-consistent fixed point f for F on the domain

D with the existence of an optimal fixed point for F , we deduce that the domain of

the optimal fixed point of F contains D. It follows that the optimal fixed point for F

satisfies the fixed point equation on the domain D. This result, which is central to the

paper, is the matter of our final theorem for recursive functions, which is the only one

that the end-user needs to invoke directly.

20

Theorem 9 (Specification of FixFunMod for recursive functions)
f = FixFunMod (≡)F

≡ is an equivalence

< is well-founded

S is compatible with ≡
F is contractive on D w.r.t. < and S modulo ≡

⇒
{
∀x.D x ⇒ f x ≡ F f x
∀x.D x ⇒ S x (f x)

A corollary can be immediately deduced for the combinator FixFun, by instantiating ≡
as =. In this case, the second hypothesis (≡ is an equivalence) and the fourth hypothesis

(S is compatible with ≡) are not needed as they are always verified. Another useful

corollary is the one for functions that do not make nested recursive calls. In this case,

there is no need to involve an invariant, i.e. S can be instantiated as the predicate that

always returns True.

5.4 Fixed point theorem for corecursive functions

While the previous section focused on the construction of a c.o.f.e. for recursive func-

tions, this section details the construction of a c.o.f.e. for corecursive functions. Com-

pared with the construction proposed in [21], we have added support for partial func-

tions and for nested calls.

Our goal is now to build a c.o.f.e. to prove that a functional of type (A → B) →
(A→ B) describing a corecursive function on a domain D admit a unique fixed point.

Here, the values of the result type B are compared using an existing c.o.f.e. (B, I,≺,
i
≈).

This c.o.f.e. induces a c.o.f.e. on the function space A→ B.

Theorem 10 (c.o.f.e. for corecursive functions) Let (B, I,≺,
i
≈) be a c.o.f.e.,

and let D be a domain of type A → Prop. Then, the structure (A → B,A,<,
i
≈D)

is a complete ordered family of equivalences, where (
i
≈D)i:I is a family of equivalence

relations such that f1
i
≈D f2 holds if ∀x.D x⇒ f1 x

i
≈ f2 x.

In this c.o.f.e., the notions of continuity of invariants and of contraction condition

can be given a direct formulation, as detailed below.

Theorem 11 (Contraction condition for corecursive functions) Let D be a

domain of type A→ Prop and let S be a indexed post-condition of type I → A→ B →
Prop, compatible with

i
≈ in the sense that if “S i x y1” holds and if “∀j ≺ i. y1

j
≈ y2”

holds then “S i x y2” holds. Then, in the c.o.f.e. for corecursive functions, a functional

F is contractive with respect to the invariant “λi f. ∀x.D x ⇒ S i x (f x)” as soon as

F satisfies the condition:

∀i x f1 f2. D x ∧ (∀y. ∀j < i. D y ⇒ f1 y
j
≈ f2 y ∧ S j y (f1 y) ∧ S j y (f2 y))

⇒ F f1 x
i
≈ F f2 x ∧ S i x (F f1 x)

Again, a specialized fixed point theorem can be devised, as well as a result about

the general-consistency of the fixed point. It follows a fixed point theorem, similar

to Theorem 9, specialized for reasoning on applications of FixFunMod to a functional

describing a partial corecursive function.

21

Theorem 12 (Fixed point theorem for corecursive functions) Let (B, I,≺,
i
≈)

be a c.o.f.e., D be a domain, and S be a continuous indexed post-condition. If the

functional F satisfies the contraction condition for corecursive function stated above,

then F admits a unique partial fixed point f modulo ≈D. Moreover, this fixed point f

is generally consistent, and satisfies the property ∀i x.D x⇒ S i x (f x).

The final theorem for corecursive function explains how to derive properties of

corecursive functions built using the combinator FixFunMod. In the following statement,

the notions of contraction and of continuity are those of Theorem 11.

Theorem 13 (Specification of FixFunMod for corecursive functions)

f = FixFunMod (≡)F

(B, I,≺,
i
≈) is a c.o.f.e.

≡ is equal to
⋂

i:I

i
≈

F is contractive on D w.r.t. S

S is compatible with
i
≈

⇒
{
∀x.D x ⇒ f x ≡ F f x
∀i x.D x ⇒ S i x (f x)

Example 4 (A corecursive function with nested calls) Recall the functional

F16, defined as F16 f s , let x :: t = s in (2 · x) :: f (f t). Let us prove that the fixed

point of this functional, defined as “FixFunMod (≡)F”, is a function that f multiplies

the i-th element of a stream with the value 22i

. Here and throughout the example,

≡ stands for stream bisimilarity, and we write “s[i]” the i-th element of the stream

s. We invoke the theorem above, using the c.o.f.e. for streams, taking the entire type

A as domain and defining the invariant S such that S i s s′ captures the proposition

“∀j < i. s′[j] = s[j] · 22j

”. This invariant relates elements of the output stream s′ with

elements of the input stream s, up to an arbitrary index i. This invariant is continuous:

if S i s s′1 holds and if s′1 is equivalent to s′2 up to any index less than i, then S i s s′2
also holds.

It remains to show that the functional is contractive in order to derive the fixed

point equation f s ≡ F16 f s, and to derive the expected specification for f . The details

of the proof of the contraction condition are left as an exercise to the reader. In short,

the first step of this proof is relatively easy: the hypothesis is used to show that “f1 t”

and “f2 t” are equal up to index i − 1. The second step is trickier: one need to prove

that “f1 s1” and “f2 s2” are equal up to index i − 1, under the assumption that s1
and s2 are equal up to index i. This second step requires one to exploit the fact that

both f1 and f2 satisfy the invariant S. The last step in the proof relies on the following

argument: if the inner application of f multiplies the i-th element of t by 22i

, and if

the outer application of f multiplies again the i-th element of t by 22i

, then the i-th

element of stream t has been multiplied by 22i+1
. Therefore, the i+1-th element of the

stream (2 · x) :: f(f(t)) is equal to the i+ 1-th element of the stream x :: t multiplied

by 22i+1, as expected.

5.5 Fixed point theorem for mixed recursive-corecursive functions

The two previous sections have focused on the reasoning on recursive functions and on

corecursive functions. This section addresses a strictly-more general class of functions:

22

those mixing recursion and corecursion. A function from this class produces a value

of coinductive type. Each recursive call must either be guarded by some constructor

(in which case the function produces some structure from its output), or the recursive

call can be made to an argument strictly-smaller than the current argument (smaller

with respect to a given well-founded relation). Here again, our construction of a c.o.f.e.

for mixed recursive-corecursive functions extends the one given by Matthews [21] by

adding support for partial functions and nested calls.

Let A→ B be the type of the function to be constructed and let D be the domain

on which we want to prove the function well-defined. The values of the input type A

are compared with respect to some well-founded relation, written <. The values of the

coinductive output type B are compared using an existing c.o.f.e. (B, I,≺,
i
≈). The

following result explains how to combine < and ≺ in order to construct a c.o.f.e. for

the function space A→ B.

Theorem 14 (c.o.f.e. for mixed recursive-corecursive functions) The structure

(A → B, I × A,<′,
(i,x)

≈′) is a c.o.f.e., where <′ is the lexicographical order associated

with the pair of relations (≺, <+) and where (
(i,x)

≈′)(i,x):I×A is a family of equivalence

relations on values of type A→ B such that

f1

(i,x)

≈′ f2 , ∀(j, y) ≤′ (i, x). D y ⇒ f1 y
j
≈ f2 y

The associated contraction condition and the fixed point theorem follow.

Theorem 15 (Contraction condition for corecursive functions) Let D be a do-

main of type A→ Prop. Let S be an indexed post-condition of type I → A→ B → Prop,

compatible with
i
≈ in the sense that if “S i x y1” holds and if “∀j ≺ i. y1

j
≈ y2” holds

then “S i x y2” holds. Then, in the c.o.f.e. for mixed recursive-corecursive functions, a

functional F is contractive w.r.t. the invariant “λ(i, x) f. D x⇒ S i x (f x)” as soon as

F satisfies the condition:

∀i x f1 f2. D x ∧ (∀(j, y) <′ (i, x). D y ⇒ f1 y
j
≈ f2 y ∧ S j y (f1 y) ∧ S j y (f2 y))

⇒ F f1 x
i
≈ F f2 x ∧ S i x (F f1 x)

The major difference with the contraction condition for simple recursive functions is in

the lexicographical comparison (j, y) <′ (i, x). It means that a recursive call is allowed

to be either performed at a level j strictly smaller than the current level i with respect

to ≺, which typically corresponds to the case where the recursive call is guarded by

some constructor, or the recursive call can be performed at the original level i, but in

this case it must be on an argument y strictly smaller than x with respect to <.

The fixed point theorem (not shown here) based on this extended contraction con-

dition leads to the following specification of the combinator FixFunMod.

Theorem 16 (Specification of FixFunMod for mixed functions)

f = FixFunMod (≡)F

< is a well-founded relation

(B, I,≺,
i
≈) is a c.o.f.e.

≡ is equal to
⋂

i:I

i
≈

F is contractive on D w.r.t. S

S is compatible with
i
≈

⇒
{
∀x.D x ⇒ f x ≡ F f x
∀i x.D x ⇒ S i x (f x)

23

Let us apply this theorem to the filter function. Let f be the function FixFunMod (≡
)F15, where F15 is the functional defined in §1.1 and ≡ stands for stream bisimilarity.

The domain D characterizes streams that contain infinitely many elements satisfying

the predicate P . Two streams from the domain are compared as follows: s < s′ holds if

the index of the first element satisfying P in s is less than the index of the first element

satisfying P in s′. No invariant is needed here, so we define S such that S i s s′ always

holds. Let us prove F contractive, as in [21]. Assume the argument s decomposes as

x :: s′. There are two cases. If x satisfies P , then the goal is x :: (f1 s
′)

i
≈ x :: (f2 s

′).

This fact is a consequence of the assumption f1 s
′ i−1
≈ f2 s

′, which we can invoke

because (i − 1, s′) is lexicographically smaller than (i, s). If x does not satisfy P , the

goal is f1 s
′ i
≈ f2 s

′. This fact also follows from the hypothesis of the contraction

condition, because (i, s′) is lexicographically smaller than the pair (i, s). Note that this

relation holds only because the argument s belongs to the domain D. In conclusion,

the equation f s ≡ F15 f s holds for any stream s in the domain D.

6 Code Extraction

In this section, we investigate the possibility for extracting executable code from cir-

cular definitions constructed in terms of our fixed point combinators.

6.1 Towards code extraction for fixed point combinators

Given a formal development carried out in higher-order logic, one can extract a purely-

functional program by retaining only the computational content and erasing all the

proof-specific elements. Extracted code enjoys a partial correctness property, which

we now describe informally. Suppose that a function f defined in the logic admits a

pre-condition P and a post-condition Q, meaning that for any argument x satisfying

P , the result y of “f x” satisfies Qxy. Then, the executable function extracted from

f also admits P and Q as pre- and post-conditions, meaning that for any argument x

satisfying P , if the execution of “f x” terminates, then its result y satisfies Qxy.

It might be surprizing that extracted code does not necessarily terminate, although

the logic admit only total functions. For example, we can construct a function loops

whose extracted code diverge in call-by-value evaluation. It is defined in such a way

that “loopsx” recursively calls “loopsx”, but with the value of the recursive call being

ignored so that the recursive call becomes irrelevant from a logical point of view. The

example can be written in Coq as follows.

Definition ignore (n:nat) : nat := 0.

Fixpoint loops (x:nat) : nat := ignore (loops x).

Extraction loops. (* let rec loops x = ignore (loops x) *)

The definition of loops is accepted in Coq because the check that recursion is made

on structurally-smaller values is allowed to perform certain forms of unfolding (see

[3] for further explanations). A similar definition can be defined in Isabelle/HOL. In

this case, the definition is accepted because one can prove a congruence rule asserting

that “ignoren” is equal to “ignorem” for any values of n and m. This property suffices

to show that a fixed point equation can be provided for the function loops without

24

breaking consistency of the logic. For a similar reason, any tail-recursive function can

be safely defined in the logic, because it always admits a fixed point. This observation

was exploited in ACL2 [20], and later implemented in Isabelle/HOL [13] and HOL4

[22].

Given that code extraction mechanisms provide no more than a partial correctness

result, we would be relatively happy if we were able to extract our circular definitions

towards code that produces correct results whenever it terminates. Yet, we face one

major difficulty. The definition of Fix relies on Hilbert’s epsilon operator, which is a

non-constructive axiom that does not admit an executable counterpart. Thus, it does

not seem immediate to extract Fix towards executable code. Nevertheless, it turns out

to be possible to devise a piece of functional code that can be used to extract the

constant Fix in a correct way, with respect to partial correctness. This piece of code

simply relies on the native “let-rec” construct from the target programming language.

Our experiments suggest that such an extraction of the fixed point combinators lead

to correct and efficient programs. This approach thus appears to be very interesting to

generate certified programs making use of advanced forms of recursive and corecursive

definitions. However, a formal justification of our approach is not attempted in this

paper. The theory of code extraction is already far from trivial (see, e.g. [18]). Worse,

there exists, as far as we know, no theory able to account for the correctness of code

extraction in the presence of user-defined extraction for particular constants, which is

precisely what we do here. Thus, we leave the proof of correctness of our approach as

a challenge to code extraction experts, and simply explain how to set up and test the

extraction process in practice.

6.2 Extraction of the fixed point combinators in Haskell

In Haskell, where evaluation is lazy by default, the extraction of the constant Fix

is very simple. Indeed, it suffices to extract “FixF” towards “letx = F x inx”. This

definition works both for recursive and corecursive values. The Coq command used to

force extraction of the constant Fix appears next. Note that the variable F is renamed

to bigf in order to meet syntactic requirements.

Extract Constant Fix => "(\bigf -> let x = bigf x in x)".

It is crucial to check that the type of the function “λF. letx = F x inx” has an

appropriate type with respect to the type of the constant Fix in the logic. Otherwise,

the extraction of the definitions that depend on Fix would all be ill-typed. In the logic,

the type of Fix is as follows:

Fix : ∀A. (InhabitedA)→ (A→ A→ Prop)→ (A→ A→ Prop)→ (A→ A)→ A

The type of Fix is polymorphic in the type A, which is the type of the value to be defined

circularly. The combinator Fix first expects a proof that the type A is inhabited. This

proof is encapsulated within the inductive data type Inhabited, which admits the type

“Type → Prop”. Because this argument lies in the world of propositions, it is erased

through extraction. The next two arguments are the binary relations ≡ and C of type

“A → A → Prop”. They are also erased through the extraction process. The last

argument is the functional of type A→ A, which is preserved by extraction. It follows

that the combinator Fix must be extracted towards a value of type “∀A. (A→ A)→ A”.

This is indeed the type of “λF. letx = F x inx”.

25

To illustrate the way extraction works, let us test the behaviour of the filter function

on streams (desribed by functional F15), which is a partial corecursive function. Firstly,

suppose we compute the stream obtained by filtering even numbers from the stream of

natural numbers. If we extract the corresponding Haskell code and write a command

to print, say, the 5 first elements of the sequence, the program displays “0 :: 2 :: 4 :: 6 ::

8”, which indeed corresponds to beginning of the stream of even numbers. Secondly,

suppose we want to compute the stream obtained by filtering natural numbers less

than 3 from the stream of natural numbers. If we extract the corresponding Haskell

code and write a command to print the 3 first elements of the sequence, the program

terminates and displays “0 :: 1 :: 2”. However, if we ask for more elements, the program

loops forever, as it fails to find any other element less than 3 in the remaining of the

stream of natural numbers.

6.3 Extraction of the fixed point combinators in OCaml

In OCaml, extraction is a little more complex due to the fact that evaluation is strict

by default, which means that corecursive values need to be explicitly tagged as lazy.

As a consequence, we need to introduce two distinct pieces of code: one to extract the

combinator for functions and another to extract the combinator for corecursive values.

The combinator for functions FixFun (or its generalization FixFunMod) takes as

argument a functional F of type (A → B) → (A → B) and returns its optimal

fixed point, of type A → B. We extract FixFun as a function that maps F to its

computational fixed point, defined as “let rec f x = F f x in f”. The corresponding Coq

command appears next.

Extract Constant FixFun => "(fun bigf -> let rec f x = bigf f x in f)".

The key intuition involved here is that whenever the computation fixed point termi-

nates, it necessarily returns the same value as the optimal fixed point.

The combinator for values FixVal (or its generalization FixValMod) can be extracted

only when it is used to produce a value that admits a coinductive type in the logic

(which is generally the case). Indeed, only inductive types are extracted using OCaml’s

lazy type. In this case, the combinator FixVal takes as argument a functional F of type

“α Lazy.t→ α Lazy.t”, and returns a value of type “α Lazy.t”. Intuitively, we would like

to define the fixed point of F as “letx = F x inx”, like in Haskell, but this definition

is not accepted by OCaml’s compiler, which enforces a strict constraint on the form

of recursive value definitions. To work around this limitation, it suffices to insert an

explicit lazy keyword, immediately followed by a call to Lazy.force, at the head of the

definition of the fixed point x.

Extract Constant FixVal =>

"(fun bigf -> let rec x = lazy (Lazy.force (bigf x)) in x)".

In conclusion, the definition of combinators in OCaml is slightly less direct than in

Haskell, but is nevertheless possible. We end this section by pointing out that direct

implementations can be devised in order to extract fixed point combinators for cur-

ried n-ary functions and mutually-recursive functions. Direct implementations benefit

from improved efficiency, because they avoid the encodings based on binary pairs and

binary sums that come with the default implementation. For example, the combinator

FixFunMod2 for taking the fixed point of a function of arity two can be extracted as

follows.

26

Extract Constant FixFunMod2 =>

"(fun bigf -> let rec f x y = bigf f x y in f)".

7 Other related work

The most closely related work has already been covered throughout §3. In this section,

we briefly mention other approaches to circular definitions. (A detailed list of papers

dealing with recursive function definitions can be found in [15].)

The package TFL developed by Slind [24] supports the definition of total recursive

functions for which a well-founded termination relation can be exhibited. Building on

Slind’s ideas, Krauss [15] developed the function package, which supports a very large

class of partial recursive functions. It relies on the generation of an inductive definition

that captures exactly the domain of the recursive function. In particular, the package

support nested recursion through a provisional induction principle and supports higher-

order recursion through congruence rules. Contrary to our work, this approach does

not support code generation for partial functions (except tail-recursive ones) and does

not support corecursion.

The technique of recursion on an ad-hoc predicate, which consists in defining a

function by structural induction on an inductive predicate that describes its domain,

was suggested by Dubois and Donzeau-Gouge [9] and developed by Bove and Capretta

[7]. Later, Barthe et al. [2] used it in the implementation of a tool for Coq. Besides the

fact that it relies heavily on programming with dependent types, one major limitation

of this approach is that the treatment of nested recursion requires the logic to support

inductive-recursive definitions, an advanced feature absent from many theorem provers.

Another possibility for defining terminating recursive functions is to work directly

with a general recursion combinator [23], using dependently-typed functionals. Balaa

and Bertot [1] proved a fixed point theorem in terms of a contraction condition for

functions of type “∀x : A. (∀y : A. R y x ⇒ B y) ⇒ B x”, where R is some well-

founded relation. More recently, Sozeau [25] implemented facilities for manipulating

subset types in Coq, including a fixed point combinator for functionals of type(
∀x : A.

(
∀y : {y : A |Ry x}. B (π1 y)

)
⇒ B x

)
⇒ ∀x : A. (B x)

This approach supports higher-order and nested recursion, but only if the inductive

invariant of the function appears explicitly in its type.

As mentioned in the introduction, Bertot [4] has investigated the formalization

of the filter function in constructive type theory. This work was later generalized to

support more general forms of mixed recursive-corecursive functions [5]. Intuitively,

the key idea is to define an auxiliary coinductive type that captures both the steps

of corecursion and the steps of recursion. More recently, Bertot and Komendantskaya

[6] experimented reasoning about non-guarded corecursive definitions by exploiting the

correspondence between streams and functions over natural numbers. While this ap-

proach is entirely constructive, their authors acknowledge that it is somewhat limited.

8 Conclusion

The theory developed in this paper can be used to formalize a fairly large class of

circular definitions. Our development provides several combinators and fixed point

27

theorems. They all derive from a single greatest fixed point combinator and from a

single general fixed point theorem for contraction conditions. We have formalized all

this material using the Coq proof assistant. A similar development could presumably be

reproduced in any other general-purpose theorem prover based on higher-order logic.

In the future, we would like to implement a generator for automatically deriving

corollaries to the general fixed point theorem, covering each possible function arity and

providing versions with and without domains and invariants. Proving such corollaries

by hand on a per-need basis is generally manageable, but having a generator would

certainly be much more convenient.

References

1. Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recursion in type
theory. In Mark Aagaard and John Harrison, editors, TPHOLs, volume 1869 of LNCS,
pages 1–16, 2000.

2. Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu. Defining and reasoning
about recursive functions: A practical tool for the Coq proof assistant. In Masami Hagiya
and Philip Wadler, editors, FLOPS, volume 3945 of LNCS, pages 114–129. Springer, 2006.

3. Gilles Barthe, Maria João Frade, E. Giménez, Luis Pinto, and Tarmo Uustalu. Type-
based termination of recursive definitions. Mathematical Structures in Computer Science,
14(1):97–141, 2004.

4. Yves Bertot. Filters on coinductive streams, an application to eratosthenes’ sieve. In
Pawel Urzyczyn, editor, TLCA, volume 3461 of LNCS, pages 102–115. Springer, 2005.

5. Yves Bertot and Ekaterina Komendantskaya. Inductive and Coinductive Components of
Corecursive Functions in Coq. In Proceedings of CMCS’08, volume 203 of ENTCS, pages
25 – 47, April 2008.

6. Yves Bertot and Ekaterina Komendantskaya. Inductive and coinductive components of
corecursive functions in coq. ENTCS, 203(5):25–47, 2008.

7. Ana Bove and Venanzio Capretta. Nested general recursion and partiality in type theory.
In Richard J. Boulton and Paul B. Jackson, editors, TPHOLs, volume 2152 of LNCS,
pages 121–135. Springer, 2001.

8. Arthur Charguéraud. Long version of the current paper, 2010. http://arthur.
chargueraud.org/research/2010/fix/.

9. C. Dubois and V. Donzeau-Gouge. A step towards the mechanization of partial functions:
domains as inductive predicates. In CADE-15 Workshop on mechanization of partial
functions, 1998.

10. Pietro Di Gianantonio and Marino Miculan. A unifying approach to recursive and co-
recursive definitions. In Herman Geuvers and Freek Wiedijk, editors, Selected Papers
from 2nd Int. Wksh. on Types for Proofs and Programs, Berg en Dal, The Netherlands,
24–28 Apr. 2002, volume 2646 of KBCS, pages 148–161. Springer-Verlag, Berlin, 2003.

11. Pietro Di Gianantonio and Marino Miculan. Unifying recursive and co-recursive definitions
in sheaf categories. In Igor Walukiewicz, editor, FOSSACS, volume 2987 of LNCS, pages
136–150. Springer, 2004.

12. John Harrison. Inductive definitions: Automation and application. In E. Thomas Schubert,
Phillip J. Windley, and Jim Alves-Foss, editors, TPHOLs, volume 971 of LNCS, pages
200–213. Springer, 1995.

13. Alexander Krauss. Defining recursive functions in isabelle/hol, 2006.
14. Alexander Krauss. Partial recursive functions in higher-order logic. In Ulrich Furbach

and Natarajan Shankar, editors, IJCAR, volume 4130 of LNCS, pages 589–603. Springer,
2006.

15. Alexander Krauss. Partial and nested recursive function definitions in higher-order logic.
Journal of Automated Reasoning, December 2009. To appear.

16. Sava Krstić. Inductive fixpoints in higher order logic. February 2004.
17. Sava Krstić and John Matthews. Inductive invariants for nested recursion. In David A.

Basin and Burkhart Wolff, editors, TPHOLs, volume 2758 of LNCS, pages 253–269.
Springer, 2003.

28

18. Pierre Letouzey. Programmation fonctionnelle certifiée :
L’extraction de programmes dans l’assistant Coq, June 01 2007.

19. Zohar Manna and Adi Shamir. The theoretical aspects of the optimal FixedPoint. SIAM
Journal on Computing, 5(3):414–426, September 1976.

20. Panagiotis Manolios and J Strother Moore. Partial functions in ACL2. 2003.
21. John Matthews. Recursive function definition over coinductive types. In Yves Bertot,

Gilles Dowek, André Hirschowitz, C. Paulin, and Laurent Théry, editors, TPHOLs, volume
1690 of LNCS, pages 73–90. Springer, 1999.

22. Magnus O. Myreen and Michael J. C. Gordon. Verified LISP implementations on ARM,
x86 and powerPC. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel, editors, TPHOLs, volume 5674 of LNCS, pages 359–374. Springer, 2009.

23. Bengt Nordström. Terminating general recursion. BIT, 28(3):605–619, 1988.
24. Konrad Slind. Reasoning about Terminating Functional Programs. PhD thesis, Institut

für Informatik, Technische Universität München, 1999.
25. Matthieu Sozeau. Subset coercions in Coq. In Thorsten Altenkirch and Conor McBride,

editors, TYPES, volume 4502 of LNCS, pages 237–252. Springer, 2006.

Appendix A: Equivalence of the definitions of partial fixed points

Let us prove the two definitions of partial fixed point equivalent. Let F be a functional

of type (A → B) → (A → B). In the sense of Definition 21, f̄ is a partial fixed point

of F if

∀f̄ ′. f̄ ′
↪→
= f̄ ⇒ f̄ ′

↪→
= partializeF f̄ ′

Let us write D the domain of f̄ and D′ the domain of f̄ ′, and expand the definition of

partialize. We get:

∀f ′D′. (f ′, D′)
↪→
= (f,D) ⇒ (f ′, D′) ≡ (F f ′, D′)

Unfolding now the definition of ≡ gives:

∀f ′D′. (D′ = D ∧ f ′ =D f) ⇒ (D′ = D′ ∧ f ′ =D′ f)

The above is equivalent to

∀f ′. f ′ =D f ⇒ f ′ =D F f ′

which asserts that (f,D) is a partial fixed point in the sense of Definition 22.

Appendix B: Proof ot the optimal fixed point theorem

Let us prove Theorem 1, which asserts the existence of an optimal fixed point for any

functional F of type (A ↪→ B) → (A ↪→ B). Our proof is directly adapted from the

original proof proposed by Manna and Shamir [19]. For the sake of presentation, we as-

sume values of the type B are using Leibnitz’ equality (=), but the Coq implementation

supports comparison with respect to an arbitrary equivalence relation ≡.

Throughout the development, we identify sets of values of type T with predicates

of type T → Prop. In particular, we write x ∈ P to mean that “P x” holds.

Definition 27 (Consistent sets) A S of partial functions is a consistent set if its

elements are pairwise consistent, that is, ∀f̄ f̄ ′ ∈ S. f̄ O f̄ ′.

29

Theorem 17 (Existence of a lub for consistent sets) Any consistent set S of

partial functions admits a least upper bound with respect to v.

Proof We say that a function f̄ covers a point x if f̄ belongs to S and x belongs to the

domain of f̄ . Let D be the set of all covered points, that is, the points x such that there

exists a function ∃f̄ . that covers x. Let g be the function defined on D that, given an

argument x, returns the application of any function from S that covers x to the value

x. Formally:

coversf̄ x , f̄ ∈ S ∧ x ∈ dom(f̄)

D , λx.∃f̄ . coversf̄ x

g , λx. if x ∈ D then (εf̄ . covers f̄ x)x else arbitrary

Let ḡ be the partial function (g,D). We want to prove that ḡ is the least upper bound

of the set S.

First, let us show that it is an upper bound, that is, ∀f̄ ∈ S. f̄ v ḡ. Let f̄

be a function in S. For the domains, we have dom(f̄) ⊆ dom(ḡ), because D con-

tains {x | coversf̄ x}. For the return values, let x be in dom(f̄) and let us prove that

f(x) = g(x). By definition of g, the value g(x) is equal to f ′(x) for some f̄ ′ ∈ S. By

consistency of S, which contains both f̄ and f̄ ′, the value f ′(x) is equal to f(x). Hence,

by transitivity, f(x) = g(x).

Second, let us show that ḡ is the smaller upper bound. Let ḡ′ be another upper

bound of S, i.e. ∀f̄ ∈ S. f̄ v ḡ′. Our goal is to prove ḡ v ḡ′. Let x be in the domain of ḡ.

By definition of ḡ, there exists a function f̄ in S such that x ∈ dom(f̄) and g(x) = f(x).

By assumption, f̄ v ḡ′. Therefore x belongs to the domain of ḡ′ and g′(x) = f(x). By

transitivity, it follows that g(x) = g′(x). Hence, ḡ extends ḡ′. ut

Theorem 18 (Lub of consistent sets of fixed points) Let F be a functional of

type (A ↪→ B) → (A ↪→ B). The least upper bound of a consistent set of partial fixed

points of F is always a partial fixed point of F .

Proof The previous theorem asserts the existence of the least upper bound ḡ of a

consistent set S, and describes it as the pair (g,D). Let us show that ḡ is a partial

fixed point of F , under the assumption that all the elements of the set S are partial

fixed point of F . The goal is: ∀g′. g′ =D g ⇒ g′ =D F g′. Let g′ be such that g′ =D g,

let x be a value in D and let us prove that g′ x = F g′ x. Since x ∈ D, there exists a

function f̄ that covers x, i.e. such that f̄ ∈ S and x ∈ dom(f̄). Because f̄ is in S, it

is, by assumption, a partial fixed point of F , meaning that the equation f ′ x = F f ′ x
holds for any f ′ such that f ′ =dom(f̄) f . So, we can prove the goal g′ x = F g′ x by

instantiating f ′ as g′. It remains to establish the premise g′ =dom(f̄) f .

To that end, let y be a value in dom(f̄). We need to prove g′(y) = f(y). Since

f̄ ∈ S and y ∈ dom(f̄), the function f̄ covers y, therefore we have y ∈ D. From y ∈ D
and g′ =D g, we deduce g′(y) = g(y). By transitivity we are left to prove f(y) = g(y).

This fact is a consequence of f̄ v ḡ, which comes from the fact that f̄ ∈ S and that ḡ

is defined as the lub of S. ut

Theorem 19 (Existence of the optimal fixed point) Any functional of type (A ↪→
B)→ (A ↪→ B) admits a greatest generally-consistent partial fixed point.

30

Proof Let F be the functional. Let S be the set of generally-consistent partial fixed

point of F . Clearly, S is a consistent set. Indeed, if f̄ and f̄ ′ are two generally-consistent

partial fixed point, then f̄ , which is a generally-consistent partial fixed point, is cer-

tainly consistent with the partial fixed point f̄ ′.
By Theorem 17, the consistent set S admits a lub ḡ. Thus, ḡ is greater than any

generally-consistent partial fixed point of F . We want to show that ḡ itself is a generally-

consistent partial fixed point of F . By Theorem 18, we know that ḡ is a partial fixed

point of F . Thus, it remains to show that ḡ is generally-consistent.

To that end, let f̄ be any partial fixed point of F . Our goal is to prove that f̄ is

consistent with ḡ, that is, f̄ O ḡ. Let S′ be the set S ∪ {f̄}, which is a set of partial

fixed point of F . Moreover, we can show that S′ is a consistent set, as follows. We

know that S and {f̄} are two consistent sets, and we can check that any element f̄ ′

from S is consistent with f̄ . Indeed, by definition of S, f̄ ′ is a generally-consistent fixed

point. Thus, f̄ ′ is consistent with the partial fixed point f̄ . It follows that S ∪ {f̄} is

consistent.

By Theorem 17 again, the consistent set S′ admits a lub h̄. To prove that f̄ and

ḡ are consistent, the plan is to show that h̄ extends both f̄ and ḡ. First, f̄ v h̄ holds

because h̄ is the lub of the set S′, which contains f̄ . Second, we can show ḡ v h̄. On

the one hand, ḡ is a generally-consistent partial fixed point, so it belongs to S. On the

other hand, h̄ is the lub of S′ and is thus greater than any element of S, hence greater

than ḡ. Third, let us prove f̄ O ḡ. Let x be a value that belongs both to the domain

of f̄ and to the domain of ḡ. Because h̄ extends both f̄ and ḡ, x also belongs to the

domain of h̄ and we have f(x) = h(x) and g(x) = h(x). Hence, f̄ and ḡ are equal on

the intersection of their domains. ut

Appendix C: Definition of coherence, limits and completeness

The definitions of local and global notions of coherence and limits are directly adapted

from the work of Matthews [21]. Throughout the section, let (A, I,≺,
i
≈) be a c.o.f.e..

Definition 28 (Local coherence) A sequence u of type I → A is locally-coherent

at level i, written locally coherentu i, if it is coherent on the domain {j | j ≺ i}. This is

equivalent to satisfying the proposition ∀j k. k ≺ j ≺ i ⇒ u k
k
≈ u j.

Definition 29 (Local limit)

limi u , ε l. (∀j ≺ i. u j
j
≈ l)

Lemma 1 (Specification of local limits)

l = limi u ∧ locally coherentu i ⇒ ∀j ≺ i. u j
j
≈ l

Proof The sequence u is coherent on the domain {j | j ≺ i}, thus by completeness of

the c.o.f.e., it admits a limit l on that domain. ut

Definition 30 (Global coherence) A sequence u of type I → A is globally-coherent,

written globally coherentu, if it is coherent on the set of all indices of type I. This is

equivalent to satisfying the proposition ∀i j. i ≺ j ⇒ u i
i
≈ u j.

31

Definition 31 (Global limit)

limu , ε l. (∀i. u i
i
≈ l)

Lemma 2 (Specification of global limits)

l = limu ∧ globally coherentu ⇒ ∀i. u i
i
≈ l

Proof The sequence u is coherent on the set of all indices of type I, thus by completeness

of the c.o.f.e. it admits a limit l on that domain. ut

Appendix D: Alternative characterisations of completeness

Matthews [21] worked in terms of local completeness and global completeness. The

definition of completeness introduced by di Gianantonio and Miculan [10] is more

elegant and eases the construction of c.o.f.e.’s on top of other c.o.f.e.’s. They proved

that completeness is equivalent to the conjunction of local completeness and global

completeness. This alternative caracterization of completeness is needed to build initial

c.o.f.e.’s, in particular c.o.f.e.’s indexed by natural numbers. Due to the interest of local

and global compeleteness, we reproduce here the proof of equivalence between the two

characterizations of completeness.

Definition 32 (Local completeness) An ordered family of equivalence (A, I,≺,
i
≈)

is locally-complete if any locally-coherent sequence u at index i admits a local limit l

in the sense that ∀j ≺ i. u j
j
≈ l.

Definition 33 (Global completeness) An ordered family of equivalence (A, I,≺,
i
≈)

is globally-complete if any globally-coherent sequence u admits a global limit l in the

sense that ∀i. u i
i
≈ l.

Lemma 3 (Completeness implies local and global completeness) If an or-

dered family of equivalence (A, I,≺,
i
≈) is complete, then it is both locally-complete and

globally-complete.

Proof For local completeness, apply the definition of completeness to the domain K

defined as λj. j ≺ i. Any locally-coherent sequence u at index i is coherent on the

domain K, thus admits a limit on the domain K. This limit is a local limit for u at

index i.

For global completeness, use the domain K defined as λi.True. Any globally-

coherent sequence u is coherent of the domain K, thus admits a limit on the domain

K. This limit is a global limit for u.

In both cases, it is immediate to check that the domain K used is downward-closed.

Lemma 4 (Local and global completeness imply completeness) If an ordered

family of equivalence (A, I,≺,
i
≈) is both locally-complete and globally-complete, then it

is complete.

32

Proof Let u be a sequence coherent on a downward-closed domain K. The goal is to

show that u admits a limit l on the domain K. The idea of the proof is to construct

a sequence v somehow related to u, show that v is both locally-coherent, that it is

globally-coherent, and that the global limit of v is also a limit for u on the domain K.

The sequence v is defined by well-founded recursion on indices as follows:

v i , if K i then u i else limi v

First, let us prove that v is locally-coherent. By well-founded induction on i, we

want to establish that j ≺ k ≺ i implies v j
j
≈ v k. There are two cases. On the one hand,

assume that K k holds. Because K is downward-closed, K j also holds. By unfolding

the definition of v, the goal v j
j
≈ v k becomes u j

j
≈ u k. This property is an immediate

consequence from the assumption that u is coherent on the domain K. On the other

hand, assume that K k does not hold. The goal v j
j
≈ v k becomes v j

j
≈ limk v. This

property holds from by Lemma 1. The fact that v is locally-coherent at index k comes

from the induction hypothesis.

Second, let us prove that v is globally-coherent. The goal is to show that j ≺ i

implies v j
j
≈ v i. Again, there are two cases. On the one hand, assume that K i holds.

Because K is downward-closed, K j also holds. By unfolding the definition of v, the

goal v j
j
≈ v i becomes u j

j
≈ u i. This property is an immediate consequence from the

assumption that u is coherent on the domain K. On the other hand, assume that K i

does not hold. The goal v j
j
≈ v i becomes v j

j
≈ limi v. This property holds from by

Lemma 1. The fact that v is locally-coherent at index i has been established earlier on.

Third, we define l as lim v. Given the fact that v is globally coherent, this limit

exists (by Lemma 2), and we have ∀i. v i
i
≈ l. Our goal is to show that l is a limit for

u on the domain K, that is, ∀i.K i⇒ u i
i
≈ l. Let i be an index in the domain K. By

definition of v, we have v i = u i, since K i holds. Thus, u i
i
≈ l.

Theorem 20 (Alternative characterization of completeness) An ordered family

of equivalence (A, I,≺,
i
≈) is complete if and only if it is both locally-complete and

globally-complete.

Proof Combine the previous two lemmas.

Appendix E: Completeness of nat-indexed c.o.f.e.’s

The following theorem is directly adapted from the work of Matthews [21].

Theorem 21 (Completeness of nat-indexed c.o.f.e.’s) Consider a family of equiv-

alence relations (A, nat, <,
i
≈), where i range over the set of natural numbers nat and

< is the standard order on natural numbers. To show this family complete, it suffices

to prove the following nat-completeness property:

∀u i. (∀i. u i
i
≈ u (i+ 1)) ⇒ ∃l.∀i. u i

i
≈ l

33

Proof This proof exploits the alternative definition of completeness (Theorem 20). So,

let us establish local completeness and global completeness.

To establish local completeness, we consider a sequence u and an index i such that

∀j k. k < j < i ⇒ u k
k
≈ u j holds and we must prove that u admits a local limit at

index i. We define a auxiliary sequence v as follows:

v k , if k < i then u k else u (i− 1)

We construct the limit l of v by applying the assumption of nat-completeness to the

sequence u and the index i. The premise to be verified is ∀k. v k
k
≈ v (k + 1). Let k be

a natural number. There are three cases. First, assume that k+ 1 < i. In this case, we

also have k < i. By definition of v, the goal v k
k
≈ v (k+1) becomes u k

k
≈ u (k+1). This

fact follows from the coherence of u at index i, because k < k+ 1 < i. Second, assume

that k+1 = i. In this case, k = i−1. By definition of v, the goal v k
k
≈ v (k+1) becomes

u k
k
≈ u (i − 1), which holds by reflexivity. Third and last, assume that k + 1 > i. In

this case, the goal v k
k
≈ v (k + 1) becomes u (i − 1)

k
≈ u (i − 1), which also holds by

reflexivity.

By construction of l as the limit of v, we have ∀j. v j
i
≈ l. Let us show that l is a

local limit for u at index i, that is, ∀j < i. u j
i
≈ l. Let j be an index less than i. By

definition of v, we have v j = u j since j < i. Thus, the property v j
j
≈ l implies u j

j
≈ l.

To establish global completeness, we consider a sequence u such that ∀i j. i <
j ⇒ u i

i
≈ u j holds and we must prove that u admits a global limit. This limit

is directly obtained by application of the nat-completeness assumption. The premise

∀i. u i
i
≈ u (i+ 1) is an immediate consequence of ∀i j. i < j ⇒ u i

i
≈ u j.

Appendix F: Fixed point theorem for contractive functionals

Throughout the section, let (A, I,≺,
i
≈) be a c.o.f.e. and F be a functional of type

A→ A contractive with respect to a continuous invariant Q of type I → A→ Prop.

Definition 34 (Construction of the fixed point)

l , limu where u i , F (limu i)

The definition of u is by well-founded recursion on the indices i. Indeed, the definition

of the local-limit at index i of the sequence u depends only on the values of u at indices

smaller than i. Due to this well-founded recursion, the definition is somewhat technical

to implement.

Lemma 5 (Invariant for contractive functionals)

∀i x. (∀j ≺ i. Q j x) ⇒ Qi (F x)

Proof Apply the contraction condition with y = x and use the fact that
j
≈ is reflexive.

ut

34

Lemma 6 (Relation between values of u at different indices)

∀i j. locally coherentu i ∧ locally coherentu j ∧ (∀k ≺ i. Q k (u k)) ⇒ u j
j
≈ u i

Proof After unfolding the definition of u, the goal becomes F (limu j)
j
≈ F (limu i). By

applying twice Lemma 1 (using the two local-coherence hypotheses), the goal becomes

F l
j
≈ F l′, with the assumptions ∀k ≺ j. v k

k
≈ l and ∀k ≺ i. v k

k
≈ l′. We now

apply the contraction condition to prove F l
j
≈ F l′, which induces three subgoals, for

a given k ≺ j. First, we justify the subgoal l
k
≈ l′ by transitivity on v k

k
≈ l (using

k ≺ j) and v k
k
≈ l′ (using k ≺ j ≺ i). Second, we establish Qk l by continuity of Q,

proving the premise ∀k′ ≺ k.Qk′ (u k′) using the third hypothesis of the lemma and

the fact that ∀k′ ≺ k. v k′
k′

≈ l. Third, we establish Qk l′ by continuity of Q, proving

the premise ∀k′ ≺ k.Qk′ (u k′) using the third hypothesis of the lemma and the fact

that ∀k′ ≺ k. v k′
k′

≈ l′. ut

Lemma 7 (Induction to establish local coherence and the invariant)

∀i. locally coherentu i ∧ Qi (u i)

Proof By well-founded induction on i. For local-coherence, we need to prove u k
k
≈ u i

under the assumption k ≺ j ≺ i. By Lemma 6, it suffices to check the local-coherence

of u at level j and at level k (both true by the first part of the induction hypothesis)

and the proposition ∀k ≺ i. Q k (u k), which holds by the second part of the induction

hypothesis.

It remains to prove Qi (u i). By definition of u, we need to show Qi (F (limi u)).

Since we have just shown u coherent at level i, we can invoke Lemma 1 to replace

the goal with Qi (F l), with the assumption that ∀j ≺ i. u j
j
≈ l. We now apply

lemma Lemma 5, which leaves the goal ∀j ≺ i. Q j l. For a given j, we can show Qj l

by continuity of Q. To that end, we first check ∀k ≺ j.Q k (u k), using the induction

hypothesis, and then check ∀k ≺ j. u k
k
≈ l, which comes from the definition of l and

the transitivity k ≺ j ≺ i. ut

Lemma 8 (Global coherence) globally coherentu holds, that is,

∀j k. k ≺ j ≺ i ⇒ u k
k
≈ u j

Proof Apply Lemma 6 and use Lemma 7 to justify the three premises, which are

“locally coherentu i” and “locally coherentu j” and “∀k ≺ i. Q k (u k)”. ut

Lemma 9 (Elimination of the continuity of Q)

(∀j ≺ i. u j
j
≈ l) ⇒ Qi l and similarly (∀j. u j

j
≈ l) ⇒ Qi l

Proof The statements are immediate consequences of the continuity of Q and of the

result shown in Lemma 7, asserting that Qj (u j) holds for any j. ut

Lemma 10 (Fixed point equation for the limit)

The limit l defined as l , limu is a fixed point of F modulo ≈.

35

Proof Remark: the limit l exists because u is globally-coherent, as established by

Lemma 8. Thus, ∀i. u i
i
≈ l. Let l′ be such that l′ ≈ l. The goal is to show l′ ≈ F l′,

which amounts to proving l′
i
≈ F l′ for an arbitrary index i. We know that l′

i
≈ l and

that l
i
≈ u i. Furthermore, u i is equal to F (limi u). Thus, it suffices to prove the equa-

tion F (limi u)
i
≈ F l′. As u is locally-coherent up to index i (Lemma 7), the limit l′′

of limi u exists, so the value l′′ is such that ∀j ≺ i. u j
j
≈ l′′. We apply the contraction

condition to the remaining goal F l′′
i
≈ F l′, which produces three subgoals.

First subgoal is ∀j ≺ i. l′′
j
≈ l′. It is justified by transitivity: l′′

j
≈ u j

j
≈ l

j
≈ l′.

Second subgoal is Qjl′′. We prove it by continuity, using Lemma 9 and checking ∀k ≺
j. u k

k
≈ l′′. Third subgoal is Qjl′. We also prove it by continuity, using Lemma 9 and

establishing ∀k ≺ j. u k
k
≈ l′ by transitivity: u k

k
≈ l

k
≈ l′. ut

Lemma 11 (Uniqueness of the limit)

The limit l defined in Lemma 10 is the unique fixed point of F modulo ≈.

Proof Let l′ be another fixed point, that is, a value such that ∀l′′ ≈ l′. l′′ ≈ F l′′.

Our goal is to show l′ ≈ l. We prove by induction on i that l′
i
≈ l. We know that

l and l′ are fixed point, thus l′
i
≈ F l and l′

i
≈ F l′. By transitivity, the goal can be

changed to F l′
i
≈ F l. We apply the contraction condition and need to prove ∀j ≺

i. l
j
≈ l′ ∧ Qj l ∧ Qj l′. Given a value j, the fact l

j
≈ l′ is can be directly deduced

from the induction hypothesis. The property Qj l follows from Lemma 9, justifying

∀k ≺ j. v k
k
≈ l by the definition of l. The property Qj l′ also follows from Lemma 9,

justifying ∀k ≺ j. v k
k
≈ l′ by transitivity: v k

k
≈ l

k
≈ l′. ut

Lemma 12 (Invariant satisfied by the limit)

The limit l defined in Lemma 10 is such that “Qi l” holds for any i.

Proof Exploit the continuity of Q, using Lemma 9, checking that ∀j. u j
j
≈ l. ut

Theorem 22 (Fixed point theorem for c.o.f.e.’s) If (A, I,≺,
i
≈) is a c.o.f.e. and

if F is a functional of type A → A contractive with respect to a continuous invariant

Q in this c.o.f.e., then F admits a unique fixed point x modulo ≈. Moreover, this fixed

point x is such that the invariant Qix holds for any i.

Proof The limit l defined in Lemma 10 is a fixed point of F modulo ≈, it is the unique

such fixed point as shown in Lemma 11, moreover it satisfies the predicate Qi for any

i as proved in Lemma 12. ut

Appendix G: Fixed point theorem for recursive functions

Theorem 23 (C.o.f.e. for recursive functions) Let ≡ be an equivalence relation of

type A→ A→ Prop, let < be a well-founded relation of type A→ A→ Prop, and let D

be a domain of type A → Prop. Then, the structure (A → B,A,<+,
x
≈) is a complete

36

ordered family of equivalences, where (
x
≈)x:A is a family of equivalence relations on

values of type A→ B defined as follows:

f1
x
≈ f2 , ∀y <∗ x. D y ⇒ f1 y ≡ f2 y

Above, <+ is the transitive closure of < and <∗ its reflexive-transitive closure.

Proof It is immediate to check that <+ is a transitive well-founded relation and that
x
≈ is an equivalence relation on the set of functions of type A → B. It remains to

check the completeness of the ordered family of equivalences (A → B,A,<+,
x
≈). Let

K be a downward-closed domain (of type A→ Prop), and let u be a sequence (of type

A → (A → B) → Prop) coherent on the domain K. By definition of coherence, this

means:

(∀x y ∈ K. y <+ x⇒ u y
y
≈ ux) ⇒ ∃l. ∀x ∈ K.ux

x
≈ l

Unfolding the definition of
x
≈, and using the fact that K is downward-closed with

respect to <+ (thus, we know that x ∈ K and z <∗ x imply z ∈ K), the above

proposition becomes:

(∀x y z ∈ K. z <∗ y <+ x ∧ D z ⇒ u y z ≡ ux z)
⇒ ∃l. ∀x z ∈ K. z <∗ x ∧ D z ⇒ ux z ≡ l z

To prove the statement, we instantiate l as λx. u x x. Let z ∈ K be a value such that

z <∗ x and D z. Our goal is to show ux z ≡ (λx. u x x) z, which is equivalent to

ux z ≡ u z z. There are two cases. If x = z, then the goal is trivial. Otherwise, z <+ x.

In this case, we apply the assumption with y = z, and get u z z ≡ ux z, which allows

us to conclude.

Theorem 24 (Fixed point theorem for recursive functions) Let ≡ be an equiv-

alence relation and < be a well-founded relation on a type A. Let D be a domain of

type A → Prop, and S be a post-condition of type A → B → Prop compatible with ≡,

in the sense that if “S x y1” holds and if “y1 ≡ y2” then “S x y2” also holds. Let F

be a functional of type (A → B) → (A → B) that satisfies the following contraction

condition:

∀x f1 f2. D x ∧ (∀y < x. D y ⇒ f1 y ≡ f2 y ∧ S y (f1 y))

⇒ F f1 x ≡ F f2 x ∧ S x (F f1 x)

Then, F admits a unique partial fixed point f modulo ≡D, where “f1 ≡D f2” stands

for the proposition ∀x.D x ⇒ f1 x ≡ f2 x. Moreover, this fixed point f satisfies the

post-condition S on the domain D, that is, ∀x.D x⇒ S x (f x).

Proof The idea is to construct the partial fixed point of F using the general fixed

point theorem for c.o.f.e.’s (Theorem 22) applied to the c.o.f.e. for recursive functions

(Theorem 5).

Before we can apply this theorem is to define an invariant Q of type A → (A →
B) → Prop in terms of D and S, So, we let Qxf , ∀y <∗ x.D y ⇒ S y (f y). We

also need to establish the continuity of Q. To that end, let K be a downward-closed

domain, f be a value of type A and u be a sequence of functions indexed with values

of type A. Suppose that ∀x ∈ K.ux
x
≈ f and that ∀x ∈ K.Qx (ux) both hold. Our

goal is to prove ∀x ∈ K.Qx f . By definition of Q and downward-closedness of K, we

need to prove ∀x, y ∈ K. y <∗ x⇒ Dy ⇒ S y (f y). Given x and y in K with Dy, we

37

can prove S y (f y). Indeed, the first assumption ux
x
≈ f gives us ux y ≡ f y, and the

second assumption Qx (ux) gives us S y (ux y). The conclusion S y (f y) follows from

the compatibility of S with respect to ≡.

We can now apply the fixed point theorem for c.o.f.e.’s. This gives us a function f

which is a fixed point of F modulo ≈. This means that for any f ′ such that f ′ ≈ f , the

equality f ′ ≈ F f ′ holds. Moreover, the fixed point f is such that ∀x.Qx (f x). Our

goal is now to prove that (f,D) is a partial fixed point of F modulo ≡.

To start with, let us establish that ≈ and ≡D both describe the same binary

relation, as follows. On the one hand, f1 ≈ f2 holds if ∀x.∀y <∗ x.D y ⇒ f1 y ≡ f2 y.

On the other hand, f1 ≡D f2 holds if ∀y.D y ⇒ f1 y ≡ f2 y. The two propositions are

cleary equivalent, hence ≈ and ≡D are two equivalent relations. It follows that for any

f ′ such that f ′ ≡D f , the equality f ′ ≡D F f ′ holds. Thus, (f,D) is a partial fixed

point of F modulo ≡.

The second conclusion of the fixed point theorem, which is ∀x.Qx (f x), ensures

that f admits S as post-condition. Indeed, by definition of Q, we have ∀x.∀y <∗

x.D y ⇒ S y (f y), which implies ∀y.D y ⇒ S y (f y).

Theorem 25 (General consistency for recursive fixed points) Under the hy-

potheses of the previous theorem, the partial function (f,D) is a generally-consistent

fixed point of the functional “partializeF”.

Proof The proof of this result is adapted from the proof that inductive fixed points are

generally-consistent, developed by Krstić [16].

Let (f ′, D′) be another partial fixed point of F . Our goal is to show that (f,D) and

(f ′, D′) are consistent, that is, ∀x.D x ∧ D′ x ⇒ f x ≡ f ′ x. Let f ′′ be the following

function:

f ′′ x , if D′ x then f ′ x else f x

First of all, observe that f ′′ ≡D′ f ′, meaning that for any x in the domain D′, we have

f ′′ x ≡ f ′ x.

Using this observation, it is clear that the proposition ∀x.D x ⇒ f x ≡ f ′′ x is

a sufficient condition to prove the goal ∀x.D x ∧ D′ x ⇒ f x ≡ f ′ x. The proof of

∀x.D x ⇒ f x ≡ f ′′ x goes by well-founded induction on x. Let x be a value such

that Dx. Our goal is f x ≡ f ′′ x. There are two cases. If D′ x does not hold, then, by

definition of f ′′, we have f ′′ x ≡ f x, so we are done. Otherwise, we can assume D′ x
to hold to prove our goal f x ≡ f ′′ x.

Because (f,D) is a partial fixed point of F and x belongs to D, we have g x ≡ F g x
for any g such that g ≡D f . In particular, we have f x = F f x, because f ≡D f is

trivially true. Because (f ′, D′) is a partial fixed point of F and x belongs to D′, we have

g x ≡ F g x for any g such that g ≡D′ f ′. In particular, we can derive f ′′ x = F f ′′ x,

because f ′′ ≡D′ f ′ was established earlier on. Thus, by transitivity, the goal f x ≡ f ′′ x
is equivalent to F f x ≡ F f ′′ x.

We prove this latter equality using the contraction condition for F . The first premise

to be verified is ∀y < x.D y ⇒ f y ≡ f ′′ y. It corresponds exactly the induction

hypothesis that we have. The second premise to be verified is ∀y < x.D y ⇒ S y (f y).

The property S y (f y) was already obtained from the fixed point theorem for recursive

functions.

In conclusion, (f,D) is a partial fixed point of F such that (f ′, D′) are consistent

for any (f ′, D′) partial fixed point of F , thus (f,D) is a generally-consistent partial

fixed point of F .

38

A similar development can be conducted for the case of mixed recursive-corecursive

functions.

