
A Core Language for Extended Pattern Matching and
Binding Boolean Expressions

Arthur Charguéraud, Yanni Lefki

Inria Camus & University of Strasbourg, CNRS, ICube

ML Workshop, October 16, 2025

1 / 28

Motivation

Story of pattern matching:

▸ introduced with ML in the 1970’s

▸ exhaustiveness checking in the 1980’s

▸ efficient compilation scheme in the late 1990’s

▸ first-class patterns in Racket/Scheme the 1990’s

▸ Haskell views and F# active patterns in the mid-2000’s

...still ongoing!

▸ Rust’s construct: if let PAT = EXPR { BODY }, in RFC from 2014

▸ Ultimate Conditional Syntax by Cheng and Parreaux, OOPSLA’24

This work: aims to provide a yet slightly simpler presentation of a
programming language that includes all the desirable features.

2 / 28

Feature focus #1: smart deconstructors

3 / 28

Smart constructors

type trm = {

desc : desc;

loc : location option; (* from parser *)

typ : typ option; } (* from typer *)

and desc =

| Trm_var of var

| Trm_bool of bool

| Trm_if of trm * trm * trm

| Trm_and of trm * trm

...

(* To construct a term in a code transformation, we would write e.g.:

{ desc = Trm_if (t1,t2,t3); loc = None; typ = None }.

Instead, one can use smart constructors such as [trm_if] and [trm_and]. *)

let trm_make (d : desc): trm =

{ desc = d; loc = None; typ = None }

let trm_if (t1 : trm) (t2 : trm) (t3 : trm) : trm =

trm_make (Trm_if (t1,t2,t3))

let trm_and (t1 : trm) (t2 : trm) : trm =

trm_make (Trm_and (t1,t2))

4 / 28

Benefits of smart constructors

Smart-constructors offer a clean API for building AST terms, based
solely on functions, not exposing the constructors.

Say we decide to remove Trm_and and encode this construct using a if:

and desc =

| Trm_var of var

| Trm_bool of bool

| Trm_if of trm * trm * trm

(* | Trm_and <-- removed *)

(* updated version of the smart constructor for [trm_and] *)

let trm_and (t1 : trm) (t2 : trm) : trm =

trm_if (t1, t2, trm_bool false)

No need to modify the client code, which continues to call trm_and.

5 / 28

What about AST deconstruction?

(* Client function to recognize terms of the form [t1 && t2 && t3] *)

let trm_and_3_inv (t : trm) : (trm * trm * trm) option =

begin match t.desc with

| Trm_and (t1, { desc = Trm_and (t2,t3); _ }) -> Some (t1,t2,t3)

| _ -> None

end

(* This client code mentions the constructor [Trm_and] *)

Such an explicit manipulation of constructors suffers from:

1. lack of abstraction
→ e.g., if we remove Trm_and, all the client code needs to change

2. lack of conciseness
→ compared with the construction: trm_and t1 (trm_and t2 t3)

6 / 28

Smart deconstructors (view/active patterns)

(* [REVISITED] Function to recognize terms of the form [t1 && t2 && t3].

Inside patterns, [trm_and] is short for [Pattern.trm_and] *)

let trm_and_3_inv (t : trm) : (trm * trm * trm) option =

match t with

| trm_and t1 (trm_and t2 t3) -> Some (t1,t2,t3)

| _ -> None

(* Definition of the smart deconstructors *)

let Pattern.trm_if (t : trm) : (trm * trm * trm) option =

match t.desc with

| Trm_if t1 t2 t3 -> Some (t1,t2,t3)

| _ -> None

let Pattern.trm_bool (t : trm) : bool option =

match t.desc with

| Trm_bool b -> Some b

| _ -> None

(* [Pattern.trm_and], assuming [trm_and] is encoded using a conditional. *)

let Pattern.trm_and (t : trm) : (trm * trm) option =

match t with

| trm_if t1 t2 (trm_bool false) -> Some (t1,t2)

| _ -> None

7 / 28

Feature focus #2: tests that export bindings

8 / 28

Motivation for binding-boolean-expressions (BBEs)

Example illustrating redundant accesses to a hashtable:

match t with

| Some k when Hashtbl.mem tbl k ->

let v = Hashtbl.get tbl k in

f v

| None ->

a_big_expression

The algorithmically efficient code is unpleasant:

let cont () = (* need to factorize the continuation *)

a_big_expression in

match t with

| Some k ->

begin match Hashtbl.get_opt tbl k with

| Some v -> f v

| None -> cont()

end

| None -> cont()

9 / 28

BBEs at play in when-clauses and conditionals
Same example, revisited:

match t with

| Some k when Hashtbl.get_opt tbl k is Some v -> f v

| None -> a_big_expression

The construct “t is p” is a binding-boolean-expression: it computes a
boolean value and binds pattern variables in case the pattern matches.

BBEs can appear in conditionals. The code above could be written:

if (t is Some k) && (Hashtbl.get_opt tbl k is Some v)

then f v

else a_big_expression

Related work: example taken from Rust RFC 2497-2025-06-18.

if let Some((fn_name , aft_name)) = s.split_once("(")

&& !fn_name.is_empty ()

&& is_legal_ident(fn_name)

&& let Some((args_str , "")) = aft_name.rsplit_once(")") {

return fn_name + args_str;

}

10 / 28

BBEs at play in while loops
The standard pattern:
while not (Queue.empty q) do

let x = Queue.pop q in

...

done

becomes:
while Queue.pop_opt q is Some x do

...

done

Merge-sort pattern:
while Stack.top_opt s1 is Some x1

&& Stack.top_opt s2 is Some x2 do

if x1 <= x2 then begin

ignore (Stack.pop s1);

Stack.push qr x1;

end else begin

ignore (Stack.pop s2);

Stack.push qr x2;

end

done;

assert (Stack.empty s1 || Stack.empty s2);

11 / 28

Formalization

12 / 28

Syntax of terms

A 𝜆-calculus with a switch construct.

𝑡, 𝑓, 𝑔 ∶= ⋃︀ 𝑥 variable
⋃︀ 𝜆(𝑥1, ..., 𝑥𝑛).𝑡 𝜆-abstraction
⋃︀ 𝑓 (𝑡1, ..., 𝑡𝑛) application
⋃︀ let𝑥 = 𝑡1 in 𝑡2 let-binding
⋃︀ switch 𝑐1 ⋃︀ ... ⋃︀ 𝑐𝑛 branching

𝑐 ∶= ⋃︀ case 𝑏 then 𝑡 branch of a switch

where 𝑏 is a binding-boolean expression.

13 / 28

Syntax of encoded term constructs

Encoding for match:

match 𝑡with
⋃︀ 𝑝1 → 𝑡1
⋃︀ 𝑝2 → 𝑡2

Ô⇒ let𝑥 = 𝑡 in
switch
⋃︀ case (𝑥 is𝑝1) then 𝑡1
⋃︀ case (𝑥 is𝑝2) then 𝑡2

Encoding for if , where 𝑏 binds variables in 𝑡1:

if 𝑏 then 𝑡1 else 𝑡2 Ô⇒
switch
⋃︀ case 𝑏 then 𝑡1
⋃︀ case true then 𝑡2

Note: due to when-clauses and possibly-impure smart deconstructors, subpatterns may
have side effects, hence the evaluation order matters a lot.

14 / 28

Syntax of binding-boolean-expressions

𝑏 ∶= ⋃︀ 𝑡 is 𝑝 pattern-matching binds ℬ(𝑝)
⋃︀ 𝑏1 and 𝑏2 conjunction (same as 𝑏1 && 𝑏2) binds ℬ(𝑏1) ∪ ℬ(𝑏2)

with 𝑏1 binding into 𝑏2

⋃︀ 𝑏1 or 𝑏2 disjunction (same as 𝑏1 || 𝑏2) binds ℬ(𝑏1) ∩ ℬ(𝑏2)
⋃︀ not 𝑏 negation binds ∅

where 𝑝 is a pattern, and where ℬ means “bindings exported by”.

Note: in the paper, we describe a core construct named switchbbe that suffices to
encode the and, or and not constructs.

15 / 28

Syntax of patterns

𝑝 ∶= ⋃︀ 𝑥? pattern variable binds {𝑥}
⋃︀ 𝑝1 ⋃︀ 𝑝2 pattern disjunction binds ℬ(𝑝1) ∩ ℬ(𝑝2)
⋃︀ 𝑝1 & 𝑝2 pattern intersection binds ℬ(𝑝1) ∪ ℬ(𝑝2)
⋃︀ 𝑝 when 𝑏 guarded pattern binds ℬ(𝑝) ∪ ℬ(𝑏)
⋃︀ 𝑓 (𝑝1, ..., 𝑝𝑛) inversor pattern binds ⋃𝑖ℬ(𝑝𝑖)
⋃︀ 𝑔 predicate pattern binds ∅

with 𝑝 binding into 𝑏

where :

▸ 𝑓 is a smart deconstructor of type: 𝑇 → (𝑇1, ..., 𝑇𝑛) option.
𝑓 (𝑝1, ..., 𝑝𝑛) is equivalent to 𝑥? when 𝑓 (𝑥) is Some (𝑝1, ..., 𝑝𝑛).

▸ classic data constructors can be viewed as smart deconstructors

▸ 𝑔 is a boolean function of type: 𝑇 → bool.
𝑔 can be viewed as a particular case of a smart deconstructor.

16 / 28

Typing & Semantics

17 / 28

Typing judgments, Typing rules for terms and BBEs

▸ 𝐸 ⊢trm 𝑡 ∶ 𝑇
▸ 𝐸 ⊢bbe 𝑏↝ 𝐵

▸ 𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵

▸ 𝐸 maps context variables to types

▸ 𝐵 maps exported variables to types

▸ Not checking for exhaustiveness

∀𝑖. 𝐸 ⊢trm 𝑐𝑖 ∶ 𝑇
𝐸 ⊢trm switch 𝑐1 ⋃︀ ... ⋃︀ 𝑐𝑛 ∶ 𝑇

𝐸 ⊢bbe 𝑏↝ 𝐵 𝐸;𝐵 ⊢trm 𝑡 ∶ 𝑇
𝐸 ⊢trm case 𝑏 then 𝑡 ∶ 𝑇

𝐸 ⊢trm 𝑡 ∶ 𝑇 𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵

𝐸 ⊢bbe 𝑡 is 𝑝 ↝ 𝐵

𝐸 ⊢bbe 𝑏1 ↝ 𝐵1 𝐸, 𝐵1 ⊢bbe 𝑏2 ↝ 𝐵2 𝐵1#𝐵2

𝐸 ⊢bbe 𝑏1 and 𝑏2 ↝ 𝐵1 ⊎𝐵2

𝐸 ⊢bbe 𝑏1 ↝ 𝐵 𝐸 ⊢bbe 𝑏2 ↝ 𝐵

𝐸 ⊢bbe 𝑏1 or 𝑏2 ↝ 𝐵

where 𝐵1#𝐵2 asserts disjointness. We disallow shadowing in and.

18 / 28

The restrict construct

𝐸 ⊢bbe 𝑏1 ↝ 𝐵 𝐸 ⊢bbe 𝑏2 ↝ 𝐵

𝐸 ⊢bbe 𝑏1 or 𝑏2 ↝ 𝐵

𝐸 ⊢bbe 𝑏↝ 𝐵 𝑉 ⊆ dom𝐵

𝐸 ⊢bbe (restrict𝑉 𝑏) ↝ 𝐵
⋃︀𝑉

The language construct restrict𝑉 𝑏 reduces to 𝑉 the set of bindings
that are exported by the BBE 𝑏.

Occurrence of restrict can be automatically inserted during algorithmic
typechecking: 𝑏1 or 𝑏2 elaborates to (restrict𝑉 𝑏1) or (restrict𝑉 𝑏2),
where 𝑉 denotes the set ℬ(𝑏1) ∩ ℬ(𝑏2).

Likewise, we have restrict𝑉 𝑝 for patterns.

Declarative typechecking rules involving disjunctions can assume that
every branch binds the exact same set of variables.

19 / 28

Typing rules for patterns

Recall that 𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵 means that 𝑝 exports the bindings 𝐵.

𝐸 ⊢pat 𝑥? ∶ 𝑇 ↝ {𝑥 ∶ 𝑇}
𝐸 ⊢pat 𝑝1 ∶ 𝑇 ↝ 𝐵1 𝐸 ⊢pat 𝑝2 ∶ 𝑇 ↝ 𝐵2 𝐵1#𝐵2

𝐸 ⊢pat (𝑝1 & 𝑝2) ∶ 𝑇 ↝ 𝐵1 ⊎𝐵2

𝐸 ⊢pat 𝑝1 ∶ 𝑇 ↝ 𝐵 𝐸 ⊢pat 𝑝2 ∶ 𝑇 ↝ 𝐵

𝐸 ⊢pat (𝑝1 ⋃︀ 𝑝2) ∶ 𝑇 ↝ 𝐵

𝐸 ⊢trm 𝑓 ∶ 𝑇 → (𝑇1, ..., 𝑇𝑛) option
∀𝑖. 𝐸 ⊢pat 𝑝𝑖 ∶ 𝑇𝑖 ↝ 𝐵𝑖 ∀𝑖 ≠ 𝑗. 𝐵𝑖#𝐵𝑗

𝐸 ⊢pat 𝑓 (𝑝1, ..., 𝑝𝑛) ∶ 𝑇 ↝ ⋃
𝑖

𝐵𝑖

𝐸 ⊢trm 𝑔 ∶ 𝑇 → bool

𝐸 ⊢pat 𝑔 ∶ 𝑇 ↝ ∅
𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵1 𝐸, 𝐵1 ⊢bbe 𝑏↝ 𝐵2 𝐵1#𝐵2

𝐸 ⊢pat (𝑝 when 𝑏) ∶ 𝑇 ↝ 𝐵1 ⊎𝐵2

𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵 𝑉 ⊆ dom𝐵

𝐸 ⊢pat (restrict𝑉 𝑝) ∶ 𝑇 ↝ 𝐵
⋃︀𝑉

20 / 28

Evaluation judgments, rules for terms and BBEs

▸ 𝑡 ⇓trm 𝑣

▸ 𝑏 ⇓bbe 𝑟
▸ 𝑣 ⊳ 𝑝 ⇓pat 𝑟

▸ 𝑟 ∶= Mismatch ⋃︀ Match 𝑀

▸ 𝑀 maps variables to values

▸ We hide mutable store

𝑏1 ⇓bbe Mismatch switch 𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛 ⇓trm 𝑣

switch (case 𝑏1 then 𝑡1) ⋃︀ 𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛 ⇓trm 𝑣

𝑏1 ⇓bbe Match 𝑀1 Subst(𝑀1, 𝑡1) ⇓trm 𝑣

switch (case 𝑏1 then 𝑡1) ⋃︀ 𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛 ⇓trm 𝑣

𝑡 ⇓ 𝑣 𝑣 ⊳ 𝑝 ⇓pat 𝑟
𝑡 is 𝑝 ⇓bbe 𝑟

𝑏1 ⇓bbe Mismatch

𝑏1 and 𝑏2 ⇓bbe Mismatch

𝑏1 ⇓bbe Match 𝑀1 Subst(𝑀1, 𝑏2) ⇓bbe Mismatch

𝑏1 and 𝑏2 ⇓bbe Mismatch

𝑏1 ⇓bbe Match 𝑀1 Subst(𝑀1, 𝑏2) ⇓bbe Match 𝑀2 𝑀1#𝑀2

𝑏1 and 𝑏2 ⇓bbe Match (𝑀1 ⊎𝑀2)

𝑏1 ⇓bbe Match 𝑀1

𝑏1 or 𝑏2 ⇓bbe Match 𝑀1

𝑏1 ⇓bbe Mismatch 𝑏2 ⇓bbe 𝑟
𝑏1 or 𝑏2 ⇓bbe 𝑟

𝑏 ⇓bbe 𝑟
restrict𝑉 𝑏 ⇓bbe 𝑟

⋃︀𝑉

21 / 28

Evaluation rules for patterns
𝑣 ⊳ 𝑝 ⇓pat 𝑟 tests whether 𝑣 matches 𝑝, returns Mismatch or Match 𝑀 .

𝑣 ⊳ 𝑥? ⇓pat Match {𝑥↦ 𝑣}
𝑣 ⊳ 𝑝 ⇓pat Mismatch

𝑣 ⊳ 𝑝 when 𝑏 ⇓pat Mismatch

𝑣 ⊳ 𝑝 ⇓pat Match 𝑀
Subst(𝑀, 𝑏) ⇓bbe Mismatch

𝑣 ⊳ 𝑝 when 𝑏 ⇓pat Mismatch

𝑣 ⊳ 𝑝 ⇓pat Match 𝑀1

Subst(𝑀1, 𝑏) ⇓bbe Match 𝑀2 𝑀1#𝑀2

𝑣 ⊳ 𝑝 when 𝑏 ⇓pat Match (𝑀1 ⊎𝑀2)

𝑓 (𝑣) ⇓trm None

𝑣 ⊳ 𝑓 (𝑝1, ..., 𝑝𝑛) ⇓pat Mismatch

𝑓 (𝑣) ⇓trm Some (𝑣1, ..., 𝑣𝑛) ∃𝑖. 𝑣𝑖 ⊳ 𝑝𝑖 ⇓pat Mismatch

𝑣 ⊳ 𝑓 (𝑝1, ..., 𝑝𝑛) ⇓pat Mismatch

𝑓 (𝑣) ⇓trm Some (𝑣1, ..., 𝑣𝑛) ∀𝑖. 𝑣𝑖 ⊳ 𝑝𝑖 ⇓pat Match 𝑀𝑖 ∀𝑖 ≠ 𝑗. 𝑀𝑖#𝑀𝑗

𝑣 ⊳ 𝑓 (𝑝1, ..., 𝑝𝑛) ⇓pat Match (⋃
𝑖

𝑀𝑖)

𝑔 (𝑣) ⇓trm false

𝑣 ⊳ 𝑔 ⇓pat Mismatch

𝑔 (𝑣) ⇓trm true

𝑣 ⊳ 𝑔 ⇓pat Match ∅
𝑣 ⊳ 𝑝 ⇓pat 𝑟

𝑣 ⊳ restrict𝑉 𝑝 ⇓pat 𝑟⋃︀𝑉

22 / 28

Type soundness theorem

Theorem (Preservation)

1. (𝑡 ⇓trm 𝑣) ∧ (⊢trm 𝑡 ∶ 𝑇) ⇒ (⊢trm 𝑣 ∶ 𝑇)
2. (𝑏 ⇓bbe Match 𝑀) ∧ (⊢bbe 𝑏↝ 𝐵) ⇒ (⊢map 𝑀 ∶ 𝐵)
3. (𝑣 ⊳ 𝑝 ⇓pat Match 𝑀) ∧ (⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵) ∧ (⊢trm 𝑣 ∶ 𝑇)
⇒ (⊢map 𝑀 ∶ 𝐵)

where ⊢map 𝑀 ∶ 𝐵 is defined as:

dom𝑀 = dom𝐵 ∧ ∀𝑥 ∈ dom𝑀. ⊢trm 𝑀(𝑥) ∶ 𝐵(𝑥)

Future work: prove progress, unless exhausting the branches of a switch.

Future work: Rocq formalization.

23 / 28

Naive compilation scheme

24 / 28

Translation into a core 𝜆-calculus
▸ J𝑡K translate a term.

▸ J𝑏K𝑢𝑢′ translate a BBE with two continuations: 𝑢 for success and 𝑢′

for failure. The term 𝑢 may refer to variables exported by 𝑏.

▸ y ▸ J𝑝K𝑢𝑢′ is the compilation of the code testing a value y against a
pattern 𝑝, again with success and failure continuations 𝑢 and 𝑢′.

Key definitions:

Jswitch (case 𝑏 then 𝑡) ⋃︀ 𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛K ≡ J𝑏KJ𝑡K
Jswitch 𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛K

J𝑡 is 𝑝K𝑢𝑢′ ≡ let y = J𝑡K in y ▸ J𝑝K𝑢𝑢′

y ▸ J𝑓 (𝑝1, ..., 𝑝𝑛)K𝑢𝑢′ ≡ match JfKy with
⋃︀ Some (x1, ...,xn) →

J(𝑥1 is 𝑝1) and ... and (𝑥𝑛 is 𝑝𝑛)K𝑢𝑢′
⋃︀ → 𝑢′

y ▸ J𝑝 when 𝑏K𝑢𝑢′ ≡ y ▸ J𝑝K
J𝑏K𝑢

𝑢′

u′

25 / 28

Correctness of the translation
Current formalization simplified to deterministic, terminating programs.

Theorem (Compilation perserves the semantics)

1. (𝑡 ⇓trm 𝑣) ∧ (fv(𝑡) = ∅)
⇒ J𝑡K ⇓ml J𝑣K

2. (𝑏 ⇓bbe 𝑟) ∧ (fv(𝑏) = ∅) ∧ tr-cont(𝑟, 𝑢, 𝑢′, 𝑤) ∧ fv-cont(𝑟, 𝑢, 𝑢′)
⇒ J𝑏K𝑢𝑢′ ⇓ml 𝑤

3. (𝑣 ⊳ 𝑝 ⇓pat 𝑟) ∧ (fv(𝑝) = ∅) ∧ tr-cont(𝑟, 𝑢, 𝑢′, 𝑤) ∧ fv-cont(𝑟, 𝑢, 𝑢′)
⇒ (J𝑣K ▸ J𝑝K𝑢𝑢′) ⇓ml 𝑤·

where:

tr-cont(𝑟, 𝑢, 𝑢′, 𝑤) ∶= (∃𝑀. 𝑟 =Match 𝑀 ∧ Subst(J𝑀K, 𝑢) ⇓ml 𝑤) ∨
(𝑟 =Mismatch ∧ 𝑢′ ⇓ml 𝑤)

fv-cont(𝑟, 𝑢, 𝑢′) ∶= (fv(𝑢′) = ∅) ∧ (∀𝑀. 𝑟 =Match𝑀 ⇒ fv(𝑢) ⊆ dom𝑀)
26 / 28

Conclusion & Future work

27 / 28

Conclusion & Future work

Formalization in Rocq would be nice.

Implementation:

▸ to be integrated into the OptiTrust framework for source-to-source
transformation; specifying which rewrite rules preserve the semantics

▸ perhaps also as a standalone pre-processor for OCaml?

▸ or maybe even as a conservative language extension?

Extensions:

▸ Interaction with exit-block construct, to support a backtracking
switch construct (like e.g. in Prolog/LTac)

▸ Are all other practical programming patterns covered?

28 / 28

	Feature focus #1: smart deconstructors
	Feature focus #2: tests that export bindings
	Formalization
	Typing & Semantics
	Naive compilation scheme
	Conclusion & Future work

