A Core Language for Extended Pattern Matching and
Binding Boolean Expressions

Arthur Charguéraud, Yanni Lefki

Inria Camus & University of Strasbourg, CNRS, ICube

‘ Université ‘ DClJBP 4
- 7
de Strashourg ' (] &ZW

ML Workshop, October 16, 2025

1/28

Motivation

Story of pattern matching:
introduced with ML in the 1970's

exhaustiveness checking in the 1980’s

v

v

v

efficient compilation scheme in the late 1990's
first-class patterns in Racket/Scheme the 1990's
Haskell views and F# active patterns in the mid-2000’s

v

v

...still ongoing!
» Rust’'s construct: if let PAT = EXPR { BODY 1}, in RFC from 2014
» Ultimate Conditional Syntax by Cheng and Parreaux, OOPSLA'24

This work: aims to provide a yet slightly simpler presentation of a
programming language that includes all the desirable features.

2/28

Feature focus #1: smart deconstructors

3/28

Smart constructors

type trm = {
desc : desc;
loc : location option; (* from parser *)
typ : typ option; } (* from typer *)

and desc =
| Trm_var of var
| Trm_bool of bool
| Trm_if of trm * trm * trm
| Trm_and of trm * trm

(* To construct a term in a code transformation, we would write e.g.:
{ desc = Trm_if (t1,t2,t3); loc = None; typ = None }.
Instead, one can use smart constructors such as [trm_if] and [trm_and]. *)

let trm_make (d : desc): trm =
{ desc = d; loc = None; typ = None }

let trm_if (t1 : trm) (t2 : trm) (t3 : trm) : trm =
trm_make (Trm_if (t1,t2,t3))

let trm_and (t1 : trm) (t2 : trm) : trm =
trm_make (Trm_and (t1,t2))

4/28

Benefits of smart constructors

Smart-constructors offer a clean API for building AST terms, based
solely on functions, not exposing the constructors.

Say we decide to remove Trm_and and encode this construct using a if:

and desc =
| Trm_var of var
| Trm_bool of bool
| Trm_if of trm * trm * trm
(* | Trm_and <-- removed *)

(* updated version of the smart comstructor for [trm_and] *)
let trm_and (t1 : trm) (t2 : trm) : trm =
trm_if (t1, t2, trm_bool false)

No need to modify the client code, which continues to call trm_and.

5/28

What about AST deconstruction?

(* Client function to recognize terms of the form [tl && t2 && t3] *)

let trm_and_3_inv (t : trm) : (trm * trm * trm) option =

begin match t.desc with
| Trm_and (t1, { desc = Trm_and (t2,t3); _ }) -> Some (t1,t2,t3)

| _ => None
end

(* This client code mentions the constructor [Trm_and] *)

Such an explicit manipulation of constructors suffers from:

1. lack of abstraction
— e.g., if we remove Trm_and, all the client code needs to change

2. lack of conciseness
— compared with the construction: trm_and t1 (trm_and t2 t3)

6/28

Smart deconstructors (view/active patterns)

(* [REVISITED] Function to recognize terms of the form [t1 && t2 && t3].
[trm_and] is short for [Pattern.trm_and] *)
(trm * trm * trm) option =

Inside patterns,
let trm_and_3_inv (t

match t with
| trm_and t1 (trm_and t2 t3) -> Some (t1,t2,t3)

: trm)

| _ -> None

(*x Definition of the smart deconstructors *)
: trm) (trm * trm * trm) option =

let Pattern.trm_if (t

match t.desc with
| Trm_if t1 t2 t3 -> Some (t1,t2,t3)

| _ -> Nome

let Pattern.trm_bool (t : trm) : bool option =
match t.desc with
| Trm_bool b -> Some b

| _ => Nomne

(* [Pattern.trm_and], assuming [trm_and] is encoded using a conditional. *)
(trm * trm) option

let Pattern.trm_and (t : trm)

match t with
| trm_if t1 t2 (trm_bool false) -> Some (t1,t2)

| _ -> None
7/28

Feature focus #2: tests that export bindings

8/28

Motivation for binding-boolean-expressions (BBEs)

Example illustrating redundant accesses to a hashtable:

match t with

| Some k when Hashtbl.mem tbl k ->
let v = Hashtbl.get tbl k in
fv

| None ->
a_big_expression

The algorithmically efficient code is unpleasant:

let cont () = (* need to factorize the continuation *)
a_big_expression in
match t with
| Some k —>
begin match Hashtbl.get_opt tbl k with
| Some v -> f v
| None -> cont()
end
| None -> cont()

9/28

BBEs at play in when-clauses and conditionals
Same example, revisited:

match t with

| Some k when Hashtbl.get_opt tbl k is Some v -> f v
| None -> a_big_expression

The construct “t is p" is a binding-boolean-expression: it computes a
boolean value and binds pattern variables in case the pattern matches.

BBEs can appear in conditionals. The code above could be written:
if (t is Some k) && (Hashtbl.get_opt tbl k is Some v)
then f v
else a_big_expression

Related work: example taken from Rust RFC 2497-2025-06-18.

if let Some((fn_name, aft_name)) = s.split_once()
%& 'fn_name.is_empty ()
&& is_legal_ident (fn_name)

&& let Some((args_str,)) = aft_name.rsplit_once() {
return fn_name + args_str;

10/28

BBEs at play in while loops

The standard pattern:

while not (Queue.empty q) do
let x = Queue.pop q in

done
becomes:

while Queue.pop_opt q is Some x do
done

Merge-sort pattern:

while Stack.top_opt sl is Some x1
&& Stack.top_opt s2 is Some x2 do
if x1 <= x2 then begin
ignore (Stack.pop s1);
Stack.push qr x1;
end else begin
ignore (Stack.pop s2);
Stack.push qr x2;
end
done;
assert (Stack.empty sl || Stack.empty s2);
11/28

Formalization

12/28

Syntax of terms

A A-calculus with a switch construct.

t,fog = | =z

| A1, xp).t

| f (t].?"‘utTL)

| letx = t1inty

| switchey|...|ep
c = | case b thent

where b is a binding-boolean expression.

variable
A-abstraction
application
let-binding
branching

branch of a switch

13/28

Syntax of encoded term constructs

Encoding for match:

match{¢with — letz = tin
|p1— t switch
| p2 > t2 | case (zisp;)then t;

| case (zisps) then ty

Encoding for if, where b binds variables in #;:
switch
if bthent; elset = | case bthen t;

| casetrue then to

Note: due to when-clauses and possibly-impure smart deconstructors, subpatterns may
have side effects, hence the evaluation order matters a lot.

14 /28

Syntax of binding-boolean-expressions

b:= | tisp pattern-matching binds B(p)

| b1 and by conjunction (same as by && by) binds B(b1) u B(b2)
with b1 binding into by

| b1 orby disjunction (same as by || by) binds B(b1) n B(bs)
| notbd negation binds &

where p is a pattern, and where B means “bindings exported by".

Note: in the paper, we describe a core construct named switch®™ that suffices to
encode the and, or and not constructs.

15/28

Syntax of patterns

2

p:= | xf pattern variable binds {z}
| p1|p2 pattern disjunction binds B(p1) n B(p2)
| p1 & po pattern intersection binds B(p1) u B(p2)
| pwhenb guarded pattern binds B(p) u B(b)
| f(p1,..-,pn) inversor pattern binds U; B(p;)
| ¢ predicate pattern binds &
with p binding into b
where :

» f is a smart deconstructor of type: T'— (11,...,T),) option.
f (p1,...,pn) is equivalent to z° when f () is Some (p1, ..., pn).

» classic data constructors can be viewed as smart deconstructors

» ¢ is a boolean function of type: T — bool.
g can be viewed as a particular case of a smart deconstructor.

16/28

Typing & Semantics

17/28

Typing judgments, Typing rules for terms and BBEs

» Ergmt:T » E maps context variables to types
» Etppe b~ B » B maps exported variables to types
» Evrpatp: T~ B » Not checking for exhaustiveness
Vi. Etymei:T Erppeb~B E;Brymt:T
E rymswitcher | ... |cn = T FE+ymcase bthent : T

Erymt:T Evrptp:T~B
Etrppetisp ~ B

E ppe b1 ~ By E, By Fpbe b2 ~ B2 Bi#B2 Etrppe b1 ~ B E rppe b2 ~ B
E Fbbe by and by ~ Bjw Ba E Fbbe by orby ~ B

where B1# B5 asserts disjointness. We disallow shadowing in and.

18/28

The restrict construct

E ppe b1 ~ B E rppe b2 ~ B Etppe b~ B V cdomB
E +ppe by or by ~ B E rppe (restrictV'b) ~ By

The language construct restrict V' b reduces to V the set of bindings
that are exported by the BBE b.

Occurrence of restrict can be automatically inserted during algorithmic
typechecking: by or b elaborates to (restrict V' b;) or (restrict V by),
where V' denotes the set B(by) n B(b2).

Likewise, we have restrict V p for patterns.

Declarative typechecking rules involving disjunctions can assume that
every branch binds the exact same set of variables.

19/28

Typing rules for patterns

Recall that E tpa¢ p: T ~ B means that p exports the bindings B.

Erpatpr: T ~ By Etpatp2: T ~ B B1#B2
E'_patx?:TM{x:T} Evrpat (p1 & p2) : T ~ BrwBs

Et+rum f: T — (T1,...,Ty) option
Vi. E Fpat Pi ¢ T,L ~r B,L Vi +] B’L%'U:BJ

Evrpaep1: T~ B Etpatp2:T~B
; : E’_Patf(plw--:pn) T o~ UBi
1

Evpat (p1|p2) : T ~ B

E rtm g: T — bool Evrpatp:T ~ By E, B1 Fppe b~ B2 B1#DB>
Evpatg : T ~ @ Evrpat (pwhenb) : T ~ BjwBs

Erpatp:T~B V cdom B
E +pat (restrictVp) : T ~ By

20/28

Evaluation judgments, rules for terms and BBEs
» t Jtrm v » r := Mismatch | Match M

> b pbe T » M maps variables to values

» > Jpat 7 » We hide mutable store

b1 Ubbe Mismatch switch ez | ... | cn Jerm v

switch (case by then t1) | c2|...|cn Jtrm v

b1 Ubbe Match My Subst(Mh tl) Utrm v t U v vD>p Upat r
switch (case b1 then ¢1) | c2 | ... | ¢n lerm v tisp lpbe T

b1 Upbe Mismatch b1 Jppe Match M; Subst(M1, b2) |ppe Mismatch
b1 and by |ppe Mismatch by and b2 |ppe Mismatch

b1 Jpbe Match My Subst(M7i, b2) Jppe Match Mo My # Mo
b1 and by Ubbe Match (Ml U] MQ)

b1 |bbe Match M, b1 |bbe Mismatch b2 Jpbe T b bpe 7
by or by |ppe Match M, b1 or ba |ppe restrict Vo pbe 7v

21/28

Evaluation rules for patterns

v > p |pat 7 tests whether v matches p, returns Mismatch or Match M.

v > P pat Mismatch

vz lpat Match {z — v} v > pwhenb |pst Mismatch
v > p |pat Match M v > p |pat Match M
Subst(M, b) Ubbe Mismatch SubSt(Ml, b) Ubbe Match My My # Mo
v > pwhenbd |p: Mismatch v > pwhenb |ps: Match (M wMa)

f (v) Jerm None
v f(p1,...,pn) Upat Mismatch

f (v) btrm Some (vy, ..., vn) 3i. v; > p; Jpat Mismatch
v > f(p1,...,pn) Upat Mismatch

f (v) ltrm Some (v1, ..., vp) Vi. ;> p; |pat Match M; Vi#j. M;#M;
v f (plv---vpn) Upat Match (UMZ)
1

g (v) Jtrm false g (v) Jtrm true v plpat 7
v > g |pat Mismatch v > g |pat Match & v > restrict V p {pat 3%

22/28

Type soundness theorem

Theorem (Preservation)

1. (t Utrm U) A (l_trmt:T) == (|—trm'U:T)

2. (bUbbe Match M) A ("bbeb“”B) = (I—mapM:B)

3. (v plpar Match M) A (Fpatp:T ~ B) A (Femv:T)
= (Fmap M : B)

where Fmap M : B is defined as:

domM =domB A VxedomM. rym M(z): B(x)

Future work: prove progress, unless exhausting the branches of a switch.

Future work: Rocq formalization.

23/28

Naive compilation scheme

24/28

Translation into a core \-calculus
» [t] translate a term.

» [b]% translate a BBE with two continuations: u for success and '
for failure. The term u may refer to variables exported by b.

» y»[p] is the compilation of the code testing a value y against a
pattern p, again with success and failure continuations u and .

Key definitions:

[switch (case b then t) | ca | ... | ¢,]

[b] [t]

[switch cz | ... | cn]
[tisp]l = lety=[t] iny»[p]¥
y»[f (p1,...,pn)]l = match [f]y with
| Some (x1,...,xn) >
[(z1 is p1) and ... and (z,, is py)]

Y,

y» H_p when b]]g, =y H_pﬂEl,)]]Z'

25/28

Correctness of the translation

Current formalization simplified to deterministic, terminating programs.

Theorem (Compilation perserves the semantics)

L (thamv) A (R(1) = 2)
= [[t]] Uml [[U]]
2. (blpper) A (fUb) =) A tr-cont(r,u, u', w) A fv-cont(r,u, u’)
= [0l bmiw
3. (v plpar) A (f(p) = @) A tr-cont(r,u, u’, w) A fv-cont(r,u, u’)

= ([l > [ple) i w-

where:

tr-cont(r,u, u’, w) = (IM.r=Match M A Subst([M], u) Jm w) v
(r = Mismatch A o' [} w)

fv-cont(r,u, u') := (fv(u') = @) A (VM. r =Match M = fv(u) < dom M)

26/28

Conclusion & Future work

27 /28

Conclusion & Future work

Formalization in Rocq would be nice.

Implementation:

» to be integrated into the OptiTrust framework for source-to-source
transformation; specifying which rewrite rules preserve the semantics

» perhaps also as a standalone pre-processor for OCaml?

» or maybe even as a conservative language extension?

Extensions:

» Interaction with exit-block construct, to support a backtracking
switch construct (like e.g. in Prolog/LTac)

» Are all other practical programming patterns covered?

28/28

	Feature focus #1: smart deconstructors
	Feature focus #2: tests that export bindings
	Formalization
	Typing & Semantics
	Naive compilation scheme
	Conclusion & Future work

