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Programming languages based on 𝜆-calculus usually have simple semantics.
Imperative variants of 𝜆-calculus add mutable variables whose value can be
retrieved through explicit get operations. This allows expressing imperative
algorithms without complicating too much the semantics. Because it is easy to
reason about programs written in imperative 𝜆-calculi, such languages are good
candidates to be used for code transformations in internal compilation passes.

However, many programmers are used to more standard imperative program-
ming languages such as C, Java or Python. For them, the explicit handling of
mutable variables is unfamiliar and may be hard to read.

In the context of OptiTrust, an interactive source-to-source code transformation
framework, we want to manipulate code that is easy to reason about for internal
transformations and that, at the same time, reads like C code familiar to
programmers from the high performance community.

This paper shows that we can get the benefits of imperative 𝜆-calculus for the
transformations, while displaying to the user code in a C-like language. Con-
cretely, we introduce a bidirectional translation between an internal imperative
𝜆-calculus and a language with mutable variables and left-values.

1 Introduction
Many domains of computer science like numerical simulations or machine learning are limited
by the available computing power. In those cases, performing the computations faster or
with less energy unlocks new usages and can significantly reduce costs. However, modern
hardware is complex, and the best performance cannot be reached by using general purpose
optimizing compilers (such as GCC, Clang, or ICC) alone [VVAT03]. Indeed, writing a
program fine-tuned for the targeted hardware usually creates significant speedups [KK22].

The community of domain specific language (DSL) for array computation, has developed
tools for a more interactive compilation such as Halide [RKBA+13] or TVM [CMJ+18]. In
such tools, the task of writing the functional behavior of the program is separated from the
task of scheduling the computation to make it as efficient as possible. Even more interactive
workflows such as the one proposed in Roly-poly [IRKF+21] can help visualize and improve
Halide schedules. However, all these approaches are intrinsically limited to programs that
can be expressed in their DSL.

To go beyond the limits of the DSL approach, we would like to build a fully interactive
compiler that allows expressing arbitrary compilation choices on arbitrary programs. The

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs 1



Bidirectional translation between OptiC and Opti𝜆 G. Bertholon and A. Charguéraud

key ingredient of such a compiler is a good feedback loop for the programmer who may
choose a transformation, immediately see the resulting intermediate code (or alternatively
see a diff summarizing the changes made by the transformation), and repeat the process
until the code delivers satisfying performance. In particular, this means that an interactive
compiler must display the program after every transformation in a way that is as readable
as possible.

Another key ingredient of any compiler (interactive or not) is to perform correct code trans-
formations. The code that implements transformations should be simple and straightforward
to avoid implementation bugs that would break the semantics of the transformed program.
In summary, an interactive compiler should ideally manipulate a programming language
that has a simple semantics for transformations, and that is easily read by programmers.

Yet, there is a tension between the readability of user-facing code and the desired simplicity
of compiler intermediate representations. This paper shows that we can alleviate this tension
by using two different programming languages and translate code between the two at any
point. With this strategy, one of the languages is reserved for user interactions, and the second
language is used internally by the code transformations. In practice, we have implemented
this strategy in an interactive source-to-source compiler, namely OptiTrust [BCK+24].

From the user point of view, OptiTrust parses and displays code and diffs in a language we
call OptiC. OptiC is designed to be very close to C, while avoiding most of the complications
of the C standard. Our choice is motivated by the fact that most programmers from the
high performance community can read C code fluently.

One key feature of the C language, that is shared with OptiC, is the concept of left-value,
and the mutability of variables. In C, unless specified otherwise, variables have a memory
address and their value is mutable. This means that the value of a variable may change
between its definition and its invocation. For transformation this means that substituting a
variable with its value requires checking whether such value was changed or not. Moreover,
expressions that are in left-value position, like the subterm of an address-of operator (&)
or on the left of an assignment (e.g. = or += ) do not have the same semantics as if they
were in right-value position. Indeed, in left-value position, the expression evaluates to its
address and not to its value. This difference of semantics of expressions in left-value position
creates a burden for transformations that need to handle differently expressions depending
on whether they appear as left- or right-values. Besides, mutable variables need special
treatment in program verification tools that handle C code. For example, in VST [CBG+18],
variables that are used as left-value (called addressable variables) cannot be used directly in
assertions: they must be described using a dedicated heap predicate.

To avoid the overheads associated with mutability and left-values, OptiTrust works
internally on an imperative 𝜆-calculus, which we call Opti𝜆, better suited for transformations.
All code transformations are performed on Opti𝜆. In Opti𝜆, like in OCaml, all variables are
immutable, and their memory address cannot be retrieved. This makes reasoning about
the code easier because all occurrences of a variable yield the same value, no matter their
position. To express imperative algorithms, mutations are allowed but only through explicit
operations on memory addresses. A memory cell at a given address can be modified with a
primitive set operation, and its contents can be retrieved with a get operation.

Another potential benefit of separating the internal language is that we could more
easily add support for other user-facing languages. Indeed, the implementation of the
transformations, which operate on Opti𝜆, would remain the same.

The main contribution of this paper is the presentation of the bidirectional translation
that is used inside OptiTrust to convert between the user-facing OptiC and the internal
transformation-friendly Opti𝜆. A specificity of our translation is that it avoids spurious
changes between the parsed OptiC code, and the OptiC code that is printed back by keeping
some stylistic annotations on Opti𝜆 terms. This means that a round-trip from OptiC back
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to OptiC is almost the identity, which can help the user navigate in their own code when
using OptiTrust. As far as we know, this is the first time a bidirectional translation between
a language with left-values and an imperative 𝜆-calculus is presented with such a form of
round-trip property.

This bidirectional translation has been implemented in OCaml, inside the OptiTrust
interactive compiler. The open-source implementation can be found at https://github.
com/charguer/optitrust. The OptiTrust framework has been successfully used in several
case studies [BCK+24, BCK+], which reproduce state-of-the-art performance on matrix
multiplication, on an OpenCV blur, and on a particle-in-cell plasma simulation. For
conciseness, this paper presents only the core of the languages OptiC and Opti𝜆. We omit
loops, arrays, and structures. There features are nevertheless implemented in OptiTrust
and exploited in the case studies.

In Section 2, we give an overview of how our bidirectional translation performs on some
examples. In Section 3, we present a formal definition of the internal Opti𝜆 language, along
with its key design elements, and the underlying call-by-value semantics. Symmetrically,
in Section 4, we describe the user-facing OptiC language and its associated semantics. In
Section 5, we give the rules for the translation from OptiC to Opti𝜆 and describe the
correctness property proving that this translation preserves the semantics of the program.
In Section 6, we give the rules for the reverse translation from Opti𝜆 to OptiC, and describe
not only the correctness property of the reverse translation, but also the round-trip property.

2 Overview
As said earlier, OptiTrust’s internal imperative 𝜆-calculus features let-bindings of variables
that are always immutable, and encodes mutability by accesses behind pointers.

Let us present how our bidirectional translation between the internal imperative 𝜆-calculus
and the user-facing C-like language works on a few examples.

We start with a simple function norm2, that does not include any mutable variable.
Immutable variables can be encoded as a simple let-binding when their address is never
taken, as shown in the following example. For the purpose of typechecking and of computing
reverse translations, the let-bindings introduced by the translation carry the type of the
bound variable. Such types appear as subscript in the example Opti𝜆 code below. Note
that the translation is bidirectional, so given only the imperative 𝜆-calculus term on the
right, our tool is capable of reproducing the exact same C program on the left.

int norm2(int x, int y){ let norm2 = fun(x ∶ int, y ∶ int)↦ {

const int xsq = x * x; letint xsq = mul(x, x);
const int ysq = y * y; letint ysq = mul(y, y);
const int res = xsq + ysq; letint res = add(xsq, ysq);
return res; res

} };

On the example above, the return instruction that appears at the end of the body
of the function is translated into a terminal value at the end of a chain of let-bindings.
As we explain later, in the syntax of our internal imperative 𝜆-calculus, we exploit 𝑛-ary
sequences instead of cascades of let-in constructs. Doing so makes it easier for programmers
to target spans of contiguous instructions, and simplify the implementation of numerous
transformations.

We say that a variable is pure if its definition is translated into a plain let-binding.
Technically, a variable x can only be pure if there is no assignment operation on x and if the
address of the variable x is never computed via the operator &x. Equivalently, a variable x
can be pure if and only if x could have been declared with the modifiers const register,
in the terminology of the C standard.
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That said, the programmer may want to translate variables that can be pure into stack-
allocated cells, to enable further code transformations. Hence, we need to rely on a keyword
(or attribute) to indicate which variables should be translated without stack allocation. We
could rely on const register, yet for brevity we decided that the keyword const alone
would indicate the intention of the programmer to introduce a pure variable.

Let us now present an example involving impure variables. The function norm2Acc, shown
below, computes the same value as norm2, yet using a mutable accumulator named acc.

int norm2Acc(int x, int y){ let norm2Acc = fun(x ∶ int, y ∶ int)↦ {

int acc; letptr(int) acc = stackCellint();
acc = x * x; set(acc, mul(x, x));
acc += y * y; inplaceAdd(acc, mul(y, y));
return acc; letint res = get(acc);

res
} };

In that case, our translation replaces the mutable variable acc with the address to the
stack space it occupies. The definition of the variable acc is replaced by an explicit allocation
of a cell on the stack materialized as a call to stackCell. Then, all functions that modify a
mutable variable such as set or inplaceAdd take their address as argument. When the value
of a mutable variable is read, such as in the return statement, our translation inserts an
explicit get operation. For reasons we explain later, our internal language syntactically only
allows single variables as the result of a sequence, and therefore the translation of the return
adds a new pure binding on a variable named res.

const int x = 3; ←→ letint x = 3;
f(x); ←→ f(x);

int z; ←→ letptr(int) z = stackCellint();

z = 6; ←→ set(z, 6);
const int v = z; ←→ letint v = get(z);

int* const a = malloc(sizeof(int)); ←→ letptr(int) a = heapCellint();

*a = *a + 2; ←→ set(a, get(a) + 2);
free(a); ←→ free(a);

int y = 5; ←→ letptr(int) y = refint(5);

f(y); ←→ f(get(y));
y = y + 2; ←→ set(y, get(y) + 2);
y += 4; ←→ inplaceAdd(y, 4);
y++; ←→ ignore(getThenIncr(y));

int* const p = &y; ←→ letptr(int) p = y;
*p = *p + 2 ←→ set(p, get(p) + 2);

int* q = &y; ←→ letptr(ptr(int)) q = refptr(int)(y);
q = &z; ←→ set(q, z);
*q = *q + 2; ←→ set(get(q), get(get(q)) + 2);

Figure 1. Example translations from C code into the OptiTrust’s internal AST. We suppose
that a function void f(int) is defined. We also suppose that variables marked
as const are never modified and that their address is never taken.

Figure 1 presents additional examples illustrating our translations. The lines involving x
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and z summarize the treatment of pure and impure variables. The lines involving a illustrate
a heap allocated variable. A read operation *a is encoded as the function call get(a), and
an assignment *a = v is encoded as set(a, v). Thus, heap-allocated variables and impure
stack-variables are treated essentially the same way in our internal 𝜆-calculus—with the
main difference that stack-allocated variables are implicitly deallocated. The name of the
primitive operation, whether stackCell or heapCell, is used to guide the reverse translation.

The lines of Figure 1 involving y illustrate the encoding of operators. The lines involving
p show how we handle the address-of operator. Finally, the lines involving q show how our
translation handles a mutable variable that stores pointers.

We next explain the last key ingredient of our bidirectional translation: the use of
annotations. The issue stems from the fact that Opti𝜆 features fewer language constructions
than OptiC. For example, OptiC features the construct if-then without else, as well as
C’s ternary operator b ? x : y, whereas Opti𝜆 only features a plain if-then-else construct.
To enable going back from Opti𝜆 to OptiC, we allow certain Opti𝜆 terms to carry a style
annotation. For example, we can annotate an if-then-else construct with the annotation ∅
to indicate that the else branch was absent in the input OptiC code. The example below
shows additional examples of style annotations, with if-statements annotated using && or
?:, for keeping track of specific OptiC constructions.

void f(int* p){ let 𝑓 = fun(𝑝 ∶ ptr(int))↦ {

if (p && *p == 0){ if (if&& 𝑝 then eq(get(𝑝), 0) else false) then {

*p = 1; set(𝑝, 1)
} } else {}∅

if (p ? (*p == 2): false){ if (if?: 𝑝 then eq(get(𝑝), 2) else false) then {

*p = 3; set(𝑝, 3)
} else {} } else {}

} };

The key point is that a style annotation never alter the semantics of a construct. OptiTrust
transformations do a best effort at preserving annotations. Yet, semantics preservation
remains guaranteed even if any of the style annotation is dropped during a transformation.

3 Opti𝜆: an Internal, Imperative 𝜆-calculus
As said in the introduction, the key feature of the Opti𝜆 language is to have few constructions,
with simple semantics. The aim is to simplify as much as possible the implementation of
code transformations. At a high-level, Opti𝜆 resembles the core of the OCaml language. In
particular, variables are always immutable, and mutation involves explicit calls to heap-
manipulating functions. We start by describing the specificities of Opti𝜆. We then present
the formal syntax of the language and its big-step semantics.

Recall that this paper presents a subset of Opti𝜆 and OptiC. We omit arrays, loops, and
structures from the presentation. These features are nevertheless implemented in OptiTrust,
and exploited in several case studies.

Sequences A sequence is a term that consists of a list of subterms with side effects
or let-bindings, to be executed in order, and of a return value. A sequence is written
{𝑡1; ...; 𝑡𝑛; 𝑟}, where each 𝑡𝑖 could be of the form let 𝑥 = 𝑡, and where 𝑟 denotes a return
value for the sequence—possibly the unit value. This presentation of sequences is similar to
that found in, e.g., the Rust language. The expression 𝑟 cannot perform side-effects; in our
current implementation, the result value 𝑟 is syntactically restricted to be either unit or a
variable. We translate a statement of the form return 𝑡 that appears in terminal position of
a C function into “ let 𝑥 = 𝑡; 𝑥” where 𝑥 is a fresh variable name.

Each sequence introduces a lexical scope, therefore when 𝑡𝑖 is of the form let 𝑥 = 𝑡, the
variable 𝑥 can be used in any 𝑡𝑗 for 𝑗 > 𝑖 but not after the closing brace. We impose in ASTs
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of Opti𝜆 the invariant that every function body consists of a sequence block, even if the
sequence contains a single instruction.

In Opti𝜆, we enforce that all the instructions in a sequence have type unit (equivalent of
void in C). To do so, we insert calls to the built-in function ignore around instruction that
are not of type void in the C code.

Sequences in Opti𝜆 may also include ghost instructions. A ghost instruction behaves,
semantically, as a no-op. It guides, however, the typechecker of OptiTrust, typically
by altering the way the memory state is described in the Separation Logic invariants.
These invariants may be exploited for guiding code transformations, and for checking their
correctness. A key interest of our design is that it allows placing instructions after the point
at which the return value is computed. Doing so is specifically useful for ghost instructions
that depend on the result value. From the perspective of our bidirectional translation, ghost
instructions are treated exactly like regular function calls.

Manipulation of Heap and Stack Cells To account for heap-allocated data, OptiTrust
provides the following standard primitive functions: heapCell for allocating an uninitialized
cell on the heap, get for reading a cell, set for writing a cell, and free for freeing allocated
cells. As usual, a read in an uninitialized memory cell is undefined behavior. Additionally,
to account for stack-allocated variables, OptiTrust includes special functions. The operation
stackCell() allocates a memory cell on the stack without initializing its contents. Its space is
automatically reclaimed at the end of the surrounding sequence. The operation ref(𝑡) also
allocates a memory cell on the stack but initializes it with 𝑡. These two special operations
are meant to occur as part of a let-binding, for example let 𝑥 = ref(3), occurring directly
within a sequence. A binding let 𝑥 = ref(𝑡) is strictly equivalent to let 𝑥 = stackCell(); set(𝑥,
𝑡). The two stack-allocation operators, apart from their implicit-free behavior, are treated
like other primitive functions.

Unbounded integers In OptiTrust, the semantics is based on unbounded integers. The
type int can accept infinitely large integers, like in Python. This greatly helps when proving
properties about the code, and removes corner cases for arithmetic optimizations that
should normally deal with possible overflows. In practice, such unbounded integers can
have a significant performance cost, and therefore they should be eliminated at some point
during the interactive compilation process. In future work, we plan to leverage function
specifications and a value analysis to choose an actual bounded size for representing integers.
To keep things simple, this paper does not include fixed size integer types in the grammar.

Other Language Constructs The other language constructs of Opti𝜆 are standard.
They include function abstraction, function calls, and conditionals. Our implementation
accounts for a diversity of literal types. For simplicity, we consider in this paper only two
kinds of literals: the metavariable 𝑏 denotes a boolean literal (either true or false), and the
metavariable 𝑛 denotes an integer literal.

Other Primitive Operations Besides the aforementioned primitive operations for ma-
nipulating heap and stack cells, OptiTrust’s internal language provides primitive functions
that correspond to the arithmetic and boolean operators of the C language.

However, certain C operators do not behave like function calls and therefore must be
encoded differently. Two such operators are the short-circuiting boolean operators && and
||. In our imperative 𝜆-calculus, in order to limit the number of language constructions
and keep simple semantics, we chose to disallow any operator that is not expressible as a
call-by-value function call. Therefore, the C short-circuit operators cannot exist. However,
this is not a real limitation since we can represent those short-circuiting operations with
conditionals whenever the second argument is not a simple expression (in particular, if it
might fail or perform side effects).
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𝑟 ∶= ⋃︀ ∅ ⋃︀ 𝑥 result of a sequence

𝑡 ∶= ⋃︀ 𝑥 variables
⋃︀ 𝑏 ⋃︀ 𝑛 boolean values, and number values
⋃︀ {𝑡1; ...; 𝑡𝑛; 𝑟} sequence
⋃︀ let 𝑥 = 𝑡 variable definition
⋃︀ fun(𝑎1, ..., 𝑎𝑛)↦ 𝑡 function definition
⋃︀ 𝑡0(𝑡1, ..., 𝑡𝑛) function call
⋃︀ if 𝑡0 then 𝑡1 else 𝑡2 conditional
⋃︀ add(𝑡1, 𝑡2) ⋃︀ inplaceAdd(𝑡1, 𝑡2) ⋃︀ ... primitive arithmetic operations
⋃︀ ignore(𝑡) primitive to ignore a return value
⋃︀ get(𝑡) ⋃︀ set(𝑡1, 𝑡2) ⋃︀ free(𝑡) primitive operations on memory cells
⋃︀ stackCell() ⋃︀ ref(𝑡) ⋃︀ heapCell() allocations of memory cells

Figure 2. Grammar of Opti𝜆, the internal 𝜆-calculus in OptiTrust. The grammar reserves
space for annotations that are not shown.

Annotations In addition to the ghost instructions presented earlier, each subterm of an
Opti𝜆 program can carry a number of extra information that do not affect the semantics in
the form of annotations. Currently, our internal AST carries the following information:

• The location of the subterm in the initial source code,

• User-placed marks allow referring to subterms by name during transformations,

• Separation logic contracts for functions and loops,

• Type information for all bindings, and for every subterm and operator,

• Style annotations to guide the reverse translation from Opti𝜆 to OptiC.

As far as this paper is concerned, only the types on let-bindings and the style annotations
are of interest.

Formal Syntax and Semantics Formally, the syntax of the Opti𝜆 language is given by
Figure 2.

A value can be either unit (written ()), a boolean, a number, a location in memory or
a function closure. A function closure is written fun𝜎

(𝑎1, ..., 𝑎𝑛) ↦ 𝑡𝑓 , and captures the
environment 𝜎 around the function definition. This capture allows function bodies to refer
to variables defined in the scope surrounding the function definition. Note, however, that
invoking a closure that performs a read at a location that had been captured by the closure
may result in the program being stuck if this location has been freed (either explicitly or
implicitly), or if it has never been initialized.

The semantics of the language is described using an environment, written 𝜎, and a memory
state, written 𝜇. The environment maps the local variable names to their corresponding
values. The memory state is a map from locations to either a value, written 𝑣, or the
uninitialized token, written ⊥. Thus, if a rule features a premise of the form 𝜇(𝑙) = 𝑣, this
premise captures the fact that the cell at address 𝑙 has been initialized, and that is currently
contains the value 𝑣. Our semantics consider that all datatypes occupy one cell slot in
memory and that each address uniquely correspond to one of such cell slot. This restriction
might be lifted later when introducing structures in the language.

The semantic judgement 𝑡⇑𝜎𝜇 ⇓ 𝑣⇑
𝜎′

𝜇′ signifies that term 𝑡 in an environment 𝜎 and a memory
state 𝜇 reduces to a value 𝑣 and update the environment to 𝜎′ and the memory state to 𝜇′.
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𝑥⇑𝜎𝜇 ⇓ 𝜎(𝑥)⇑
𝜎
𝜇

Var
𝑡⇑𝜎𝜇 ⇓ 𝑣⇑

𝜎
𝜇′

(let 𝑥 = 𝑡)⇑𝜎𝜇 ⇓ ()⇑
𝜎(︀𝑥↦𝑣⌋︀
𝜇′

Let

𝑡0⇑
𝜎0
𝜇0
⇓ ()⇑𝜎1

𝜇1
{𝑡1; ...; 𝑡𝑛; 𝑟}⇑

𝜎1
𝜇1
⇓ 𝑣⇑𝜎1

𝜇′

{𝑡0; 𝑡1; ...; 𝑡𝑛; 𝑟}⇑
𝜎0
𝜇0
⇓ 𝑣⇑𝜎0

𝜇′
SeqInstr

𝑣 =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

() if 𝑟 = ∅
𝜎(𝑟) otherwise
{𝑟}⇑𝜎𝜇 ⇓ 𝑣⇑

𝜎
𝜇

SeqRes

(fun(𝑎1, ..., 𝑎𝑛)↦ 𝑡𝑓)⇑
𝜎
𝜇 ⇓ (fun𝜎

(𝑎1, ..., 𝑎𝑛)↦ 𝑡𝑓)⇑
𝜎
𝜇

Fun

𝑡0⇑
𝜎
𝜇0
⇓ (fun𝜎𝑓 (𝑎1, ..., 𝑎𝑛)↦ 𝑡𝑓)⇑

𝜎
𝜇1

∀𝑖 ∈ (︀1;𝑛⌋︀, 𝑡𝑖⇑
𝜎
𝜇𝑖
⇓ 𝑣𝑖⇑

𝜎
𝜇𝑖+1

𝜎𝑐 = 𝜎𝑓 (︀𝑎𝑖 ↦ 𝑣𝑖⌋︀ 𝑡𝑓 ⇑
𝜎𝑐
𝜇𝑛+1
⇓ 𝑣⇑𝜎𝑐

𝜇′

𝑡0(𝑡1, ..., 𝑡𝑛)⇑
𝜎
𝜇0
⇓ 𝑣⇑𝜎𝜇′

Call

𝑡𝑐⇑
𝜎
𝜇 ⇓ true⇑𝜎𝜇𝑐

𝑡𝑡⇑
𝜎
𝜇𝑐
⇓ 𝑣⇑𝜎𝜇′

(if 𝑡𝑐 then 𝑡𝑡 else 𝑡𝑓)⇑
𝜎
𝜇 ⇓ 𝑣⇑

𝜎
𝜇′

IfTrue
𝑡𝑐⇑

𝜎
𝜇 ⇓ false⇑𝜎𝜇𝑐

𝑡𝑓 ⇑
𝜎
𝜇𝑐
⇓ 𝑣⇑𝜎𝜇′

(if 𝑡𝑐 then 𝑡𝑡 else 𝑡𝑓)⇑
𝜎
𝜇 ⇓ 𝑣⇑

𝜎
𝜇′

IfFalse

𝑡⇑𝜎𝜇 ⇓ 𝑙⇑
𝜎
𝜇′ 𝜇′(𝑙) = 𝑣

get(𝑡)⇑𝜎𝜇 ⇓ 𝑣⇑
𝜎
𝜇′

Get
𝑡1⇑

𝜎
𝜇0
⇓ 𝑙1⇑

𝜎
𝜇1

𝑡2⇑
𝜎
𝜇1
⇓ 𝑣2⇑

𝜎
𝜇2

𝑙1 ∈ dom(𝜇2)

set(𝑡1, 𝑡2)⇑𝜎𝜇0
⇓ ()⇑𝜎𝜇2(︀𝑙1↦𝑣2⌋︀

Set

𝑡⇑𝜎𝜇 ⇓ 𝑣⇑
𝜎
𝜇′

ignore(𝑡)⇑𝜎𝜇 ⇓ ()⇑
𝜎
𝜇′

Ignore
𝑡1⇑

𝜎
𝜇0
⇓ 𝑛1⇑

𝜎
𝜇1

𝑡2⇑
𝜎
𝜇1
⇓ 𝑛2⇑

𝜎
𝜇2

𝑛′ = 𝑛1 + 𝑛2

add(𝑡1, 𝑡2)⇑𝜎𝜇0
⇓ 𝑛′⇑𝜎𝜇2

Add

𝑡1⇑
𝜎
𝜇0
⇓ 𝑙1⇑

𝜎
𝜇1

𝑡2⇑
𝜎
𝜇1
⇓ 𝑛2⇑

𝜎
𝜇2

𝜇2(𝑙1) = 𝑛1 𝑛′ = 𝑛1 + 𝑛2

inplaceAdd(𝑡1, 𝑡2)⇑𝜎𝜇0
⇓ 𝑛′⇑𝜎𝜇2(︀𝑙1↦𝑛′⌋︀

InplaceAdd

𝑙 ∉ dom(𝜇)

heapCell()⇑𝜎𝜇 ⇓ 𝑙⇑
𝜎
𝜇(︀𝑙↦⊥⌋︀

HeapCell
𝑡⇑𝜎𝜇 ⇓ 𝑙⇑

𝜎
𝜇′ 𝑙 ∈ dom(𝜇′)

free(𝑡)⇑𝜎𝜇 ⇓ ()⇑
𝜎
𝜇′∖𝑙

Free

𝑙 ∉ dom(𝜇0) {𝑡1; ...; 𝑡𝑛; 𝑟}⇑
𝜎0(︀𝑥0↦𝑙⌋︀

𝜇0(︀𝑙↦⊥⌋︀
⇓ 𝑣⇑

𝜎0(︀𝑥0↦𝑙⌋︀
𝜇′ 𝑙 ∈ dom(𝜇′)

{let 𝑥0 = stackCell(); 𝑡1; ...; 𝑡𝑛; 𝑟}⇑𝜎0
𝜇0
⇓ 𝑣⇑𝜎0

𝜇′∖𝑙

StackCell

{let 𝑥0 = stackCell(); set(𝑥0, 𝑡0); 𝑡1; ...; 𝑡𝑛; 𝑟}⇑
𝜎
𝜇 ⇓ 𝑣⇑

𝜎
𝜇′

{let 𝑥0 = ref(𝑡0); 𝑡1; ...; 𝑡𝑛; 𝑟}⇑𝜎𝜇 ⇓ 𝑣⇑
𝜎
𝜇′

Ref

Figure 3. Semantics of the Opti𝜆 internal language. Other arithmetic built-in functions
follow the pattern of Add or InplaceAdd.
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Note that only the let-binding instructions that add a new variable name to the context
may alter the environment. For simplicity, we here consider a deterministic semantics. To
smoothly handle non-determinismn we could use an omni-big-step semantics [CCEG23], or
fall back to a standard small-step judgement.

The call-by-value, big-step semantics appears in Figure 3. When 𝜎(𝑥) appears in a rule,
there is an implicit assumption that 𝑥 ∈ dom(𝜎). We write 𝜎(︀𝑥 ↦ 𝑣⌋︀ to create or update
a binding from 𝑥 to 𝑣. The operations 𝜇(𝑙) and 𝜇(︀𝑙 ↦ 𝑣⌋︀ operate similarly on stores. We
write 𝜇 ∖ 𝑙 the store obtained by removing the binding on 𝑙 from 𝜇.

The attentive reader might notice that our semantics fixes the order of evaluation of
the arguments of a function call from left to right. This choice is arbitrary. In practice,
OptiTrust relies on a Separation Logic type-system (not shown in this paper), which ensures
that the argument evaluation order cannot influence the results of computations.

4 OptiC: a C-Like, User-Facing Language
We strive to make the user-facing language of OptiTrust as close to C as possible, in order
to make the tool accessible to most programmers.

Comparison with C Syntactically, OptiC is a subset of C, with a few extensions
borrowed from C++. Our current implementation of OptiTrust parses OptiC code using
Clang. Moreover, OptiTrust users can benefit from the C or C++ support of their IDEs to
edit OptiC code.

Semantically, OptiC admits a simpler semantics than C. Supporting all the features of
the C language would be extremely challenging. To see why, it suffices to contemplate the
size of the Coq formalization of a significant subset of C [Kre15]. OptiC features fewer
undefined behaviors than C, in particular with respect to evaluation order. Hence, it is
incorrect to compile OptiC code using an arbitrary C-compliant compiler. Instead, either
a prior translation to C is required, e.g. to bind intermediate expressions; or one should
translate OptiC code directly into a lower-level language, such as CompCert’s C-light or
LLVM IR.

Strict order of evaluation for all operators In standard C, operators do not necessarily
behave like calls to primitive functions. Indeed, the standard allows for a more liberal
argument evaluation order. This is visible for pre/post-increment/decrement operators such
as i++. For example, it is undefined whether the instruction u = u++; increments u or
not. However, when written as call-by-value function calls, set(&u, getAndIncr(&u)), it is
obvious that it cannot increment u. Since code transformations might accidentally produce
code such as u = u++, and we do not want to treat operators in a special way, the OptiC
language exposes fewer undefined behaviors than standard C. In that case, we impose that
operators behave like function calls. This means that we do not guarantee any evaluation
order of the arguments, but we ensure that all arguments performed all their side effects
before the execution of an operator syntactically higher in the AST. This is not a problem
when importing C code because this only restricts the number of possible behaviors of any
given piece of code.

No integer overflows Like for the internal imperative 𝜆-calculus, in our C-like language,
we consider that type int is unbounded. This specifically alleviates the burden of undefined
behaviors when signed overflow occurs. In OptiTrust, a transformation that chooses the
width of an integer variable is responsible to insert assertions that prevent overflow or prove
the absence of such overflow. We leave the support of bounded integers to future work.
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Variables marked const and function arguments are pure As we saw in Section 2,
it is important for our translation to understand whether a variable is pure or impure. Since
transformations may react differently in presence of pure or impure variables, we want to
syntactically distinguish variables we treat as pure. To reduce the amount of syntactic noise,
our internal C-like language treats the keyword const as a request to handle the variable as
a pure variable. Moreover, we made the design decision to always treat function arguments
as pure variables. The mutation of function arguments is allowed in C, yet it is a rarely
used feature, which can easily be avoided. We might, in future work, extend our translation
to handle mutated arguments.

Function types and function variables In C, a programmer can write pointers to
functions such as int (*fptr)(int);. This type can only accept functions that do not
capture their surrounding environment. The semantics of the operators & and * when
applied to C functions is not as simple as one may hope. In OptiC, we chose instead to use
the C++ function types, such as std::function<int(int)>, which in this paper we write
fun<int(int)>, assuming fun to be defined as an alias. A local variable with a function
type may be either pure or impure. However, all functions declared using the syntax of C
function definitions (e.g., int f(){ return 42; }) are represented as pure variables.

Syntax extensions for translating back from Opti𝜆 OptitTrust transformations
may generate ASTs in Opti𝜆 with arbitrary shapes. In particular, the grammar of Opti𝜆
allows function abstractions and sequences with a return value to appear anywhere as
subterms in the AST. This flexibility does not exist in the standard C. Yet, we wish
to be able to display to the OptiTrust user the corresponding AST in OptiC syntax.
To that end, we consider standard extensions of the C language; such extensions would
probably be already familiar to the OptiTrust user. For sequences, we consider the GNU
C extensions1, which supports the syntax ({ 𝑢1; ...;𝑢𝑛;𝑢𝑟; }) , where 𝑢𝑟 is an expression
that corresponds to the return value. For functions, we borrow the C++ syntax for closures,
written [&](T_1 a_1, ..., T_n a_n){...}. Moreover, we allow the nested functions from
the GNU C extensions2.

Unsupported C Features OptiTrust does not aim at covering all the features of the C
language in the short term. Our current implementation does not handle switch, although
we could presumably encode it using a cascade of if-statements. There is no support yet for
break, continue, or non-terminal return. Besides, we do not treat gotos—and we only
plan to consider a restricted form via a well-scoped block-exit contruct.

Semantics We equip the OptiC language with the big-step semantics. Similarly to the
semantics described for Opti𝜆, the semantics of OptiC is also described using an environment
and a memory state. The memory state, written 𝑚, maps locations to values. Such values
also include unit, booleans, integers, locations and function closures this time written with a
C++-like syntax (︀𝑠⌋︀(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓 when capturing an environment 𝑠. The environment,
written 𝑠, maps variables to locations. This contrast with Opti𝜆, where environments map
variables to values.

The semantics OptiC is described using two reduction judgements. 𝑢⇑𝑠𝑚 ⇓ 𝑣⇑
𝑠′

𝑚′ asserts
that the term 𝑢, appearing as an instruction or as a right-value, reduces, in the environment
𝑠 and the memory state 𝑚, to the value 𝑣, updating the environment to 𝑠′ and the memory
state to 𝑚′. The second judgement 𝑢⇑𝑠𝑚 ⇓

& 𝑣⇑𝑠
′

𝑚′ is similar but for evaluating expressions in
left-value position; its output value 𝑣 is always a location. The evaluation rules appear in
Figure 4.

1https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Statement-Exprs.html
2https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Nested-Functions.html
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𝑥⇑𝑠𝑚 ⇓𝑚(𝑠(𝑥))⇑𝑠𝑚
Var

𝑥⇑𝑠𝑚 ⇓
& 𝑠(𝑥)⇑𝑠𝑚

LVar

𝑢0⇑
𝑠0
𝑚0
⇓ 𝑣0⇑

𝑠1
𝑚1

{𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠1
𝑚1
⇓ 𝑣⇑𝑠1𝑚′

{𝑢0;𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠0
𝑚0
⇓ 𝑣⇑𝑠0𝑚′

SeqCons

𝑞 = (𝑡; ) ∨ 𝑞 = (return 𝑡;) 𝑡⇑𝑠𝑚 ⇓ 𝑣⇑
𝑠
𝑚′

{𝑞}⇑𝑠𝑚 ⇓ 𝑣⇑
𝑠
𝑚′

SeqRes
𝑞 = ∅ ∨ 𝑞 = (return;)

{𝑞}⇑𝑠𝑚 ⇓ ()⇑
𝑠
𝑚

SeqVoid

((︀&⌋︀(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓)⇑
𝑠
𝑚 ⇓ ((︀𝑠⌋︀(𝑇1 𝑎1, ...;𝑇𝑛 𝑎𝑛)𝑢𝑓)⇑

𝑠
𝑚

FunClosure

𝑢0⇑
𝑠
𝑚0
⇓ ((︀𝑠𝑓 ⌋︀(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓)⇑

𝑠
𝑚1

∀𝑖 ∈ (︀1;𝑛⌋︀, 𝑢𝑖⇑
𝑠
𝑚𝑖
⇓ 𝑣𝑖⇑𝑚′𝑖+1

∧ 𝑙𝑖 ∉ dom(𝑚′𝑖+1) ∧ 𝑚𝑖+1 =𝑚
′
𝑖+1(︀𝑙𝑖 ↦ 𝑣𝑖⌋︀

𝑠𝑐 = 𝑠𝑓 (︀𝑎𝑖 ↦ 𝑙𝑖⌋︀ 𝑢𝑓 ⇑
𝑠𝑐
𝑚𝑛+1

⇓ 𝑣⇑𝑠𝑐𝑚𝑞
𝑚′ =𝑚𝑞 ∖ { 𝑙𝑖 ⋃︀ 𝑖 ∈ (︀1;𝑛⌋︀ }

𝑢0(𝑢1, ..., 𝑢𝑛)⇑
𝑠
𝑚0
⇓ 𝑣⇑𝑠𝑚′

Call

𝑢𝑐⇑
𝑠
𝑚 ⇓ true⇑𝑠𝑚𝑐

𝑢𝑡⇑
𝑠
𝑚𝑐
⇓ 𝑣⇑𝑠𝑚′

(if(𝑢𝑐) 𝑢𝑡 else 𝑢𝑓)⇑
𝑠
𝑚 ⇓ ()⇑

𝑠
𝑚′

IfTrue
𝑢𝑐⇑

𝑠
𝑚 ⇓ false⇑𝑠𝑚𝑐

𝑢𝑓 ⇑
𝑠
𝑚𝑐
⇓ 𝑣⇑𝑠𝑚′

(if(𝑢𝑐) 𝑢𝑡 else 𝑢𝑓)⇑
𝑠
𝑚 ⇓ ()⇑

𝑠
𝑚′

IfFalse

𝑢⇑𝑠𝑚 ⇓ 𝑙⇑
𝑠
𝑚′ 𝑚′(𝑙) = 𝑣

(∗𝑢)⇑𝑠𝑚 ⇓ 𝑣⇑
𝑠
𝑚′

Get
𝑢⇑𝑠𝑚 ⇓ 𝑣⇑

𝑠
𝑚′

(∗𝑢)⇑𝑠𝑚 ⇓
& 𝑣⇑𝑠𝑚′

LGet
𝑢⇑𝑠𝑚 ⇓

& 𝑣⇑𝑠𝑚′

(&𝑢)⇑𝑠𝑚 ⇓ 𝑣⇑
𝑠
𝑚′

Address

𝑢1⇑
𝑠
𝑚0
⇓& 𝑙1⇑

𝑠
𝑚1

𝑢2⇑
𝑠
𝑚1
⇓ 𝑣2⇑

𝑠
𝑚2

𝑙1 ∈ dom(𝑚2)

(𝑢1 = 𝑢2)⇑
𝑠
𝑚0
⇓ ()⇑𝑠𝑚2(︀𝑙1↦𝑣2⌋︀

Set

𝑡1⇑
𝑠
𝑚0
⇓ 𝑛1⇑

𝑠
𝑚1

𝑡2⇑
𝑠
𝑚1
⇓ 𝑛2⇑

𝑠
𝑚2

(𝑡1 + 𝑡2)⇑
𝑠
𝑚0
⇓ (𝑛1 + 𝑛2)⇑

𝑠
𝑚2

Add

𝑡1⇑
𝑠
𝑚0
⇓& 𝑙1⇑

𝑠
𝑚1

𝑡2⇑
𝑠
𝑚1
⇓ 𝑛2⇑

𝑠
𝑚2

𝑚2(𝑙1) = 𝑛1 𝑛′ = 𝑛1 + 𝑛2

(𝑡1 += 𝑡2)⇑
𝑠
𝑚0
⇓ 𝑛′⇑𝑠𝑚2(︀𝑙1↦𝑛′⌋︀

InplaceAdd

𝑙 ∉ dom(𝑚)

malloc(sizeof(𝑇 ))⇑𝑠𝑚 ⇓ 𝑙⇑
𝑠
𝑚(︀𝑙↦⊥⌋︀

HeapCell 𝑢⇑𝑠𝑚 ⇓ 𝑙⇑
𝑠
𝑚′ 𝑙 ∈ dom(𝑚′)

free(𝑢)⇑𝑠𝑚 ⇓ ()⇑
𝑠
𝑚′∖𝑙

Free

𝑙 ∉ dom(𝑚0) {𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠0(︀𝑥0↦𝑙⌋︀

𝑚0(︀𝑙↦⊥⌋︀
⇓ 𝑣⇑

𝑠0(︀𝑥0↦𝑙⌋︀
𝑚′ 𝑙 ∈ dom(𝑚′)

{𝑇 𝑥0;𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠0
𝑚0
⇓ 𝑣⇑𝑠𝑚′∖𝑙

StackCell

{𝑇 𝑥0;𝑥0 = 𝑢0;𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠
𝑚 ⇓ 𝑣⇑

𝑠
𝑚′

{𝑇 𝑥0 = 𝑢0;𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠
𝑚 ⇓ 𝑣⇑

𝑠
𝑚′

InitStackCell

{fun<𝑇0(𝑇1, ..., 𝑇𝑛)>𝑥 = (︀&⌋︀(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓 ;𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠
𝑚 ⇓ 𝑣⇑

𝑠
𝑚′

{𝑇0 𝑥(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓 ;𝑢1; ...;𝑢𝑛; 𝑞}⇑
𝑠
𝑚 ⇓ 𝑣⇑

𝑠
𝑚′

FunDef

Figure 4. Semantics of the OptiC user-facing language. The ternary conditional operator
and the short-circuiting operators (not shown) follow a pattern similar to IfTrue
and IfFalse. Other arithmetic built-in functions follow the pattern of Add or
InplaceAdd. OptiC impose that the return keyword is only used in terminal
position of a function body, and therefore acts like the result value of a sequence.
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5 Translation from OptiC to Opti𝜆
This section describes the translation from the user-facing C-like language into OptiTrust’s
internal 𝜆-calculus. We call this operation the encoding.

As exposed in the overview, the translation from the user-facing language to the internal
𝜆-calculus crucially depends on the notion of pure variables. We can assume at this step
that all pure variables are marked as const in the C-like language (recall that it corresponds
to const register in C). This means that pure variables can be considered immutable and
without an address.

The essence of the encoding process is to eliminate the notion of left-value by replacing
impure variables with their stack-allocated address. Then, the encoding wraps the accesses
to values of impure variables with a get operation. Such a process of elimination of the
left-values is commonly found in the implementation of compilers. However, compilers in
general are not concerned with supporting a reverse translation.

Figure 5 defines our translation from C to OptiTrust’s internal language. We write ⟨︀𝑢⧹︀
the encoding of an OptiC term 𝑢, which could be a statement or an expression in right-value
position. We write ⟨︀𝑢⧹︀& the encoding of an OptiC term 𝑢 appearing in left-value position.

During the encoding we build a global set Π that contains the identifiers of all variables
marked as pure. Recall that in particular, this includes the names given in function definitions.
Every occurrence of a variable that is not in Π becomes wrapped inside a call to get. Note
that this encoding fails if the invariants imposed by the declared purity of a variable are
not satisfied. Note also that this encoding adds style annotations to the Opti𝜆 terms being
produced.

We can show that this encoding preserves the semantics by showing that a simulation
relation is preserved between the states of an OptiC program and its corresponding encoding
in Opti𝜆.

In order to characterize the simulation, we need to relate values, environments and memory
states of the two languages. This simulation involves a relocation map, written 𝜌, that binds
locations from the OptiC memory to the corresponding locations in the Opti𝜆 memory.
Pure variables do not have an address in Opti𝜆, and therefore the locations of such variables
do not occur in 𝜌. We say that a relocation map 𝜌 is compatible with an environment 𝑠, a
memory 𝑚 and a pure variable set Π, and we write 𝜌 ⋉ (𝑠, 𝑚, Π) when the domain of 𝜌 is
exactly the set of all the locations from 𝑚 except those bound in 𝑠 by a pure variable in Π.
Formally:

𝜌 ⋉ (𝑠, 𝑚, Π) ⇔ dom(𝜌) = dom(𝑚) ∖ {𝑙 ⋃︀ ∃𝑥 ∈ Π, 𝑠(𝑥) = 𝑙}

We are now ready to define the encoding function, written ⟨︀⋅⧹︀𝜌. This encoding applies to
values, environments, and memory states.

For values, the encoding function traverse the structure of values, until reaching a location
or a closure. For these entities, the following two rules apply.

⟨︀𝑙⧹︀𝜌 = 𝜌(𝑙)

⟨︀(︀𝑠⌋︀(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓 ⧹︀𝜌 = fun⟨︀𝑠⧹︀𝜌(𝑎1, ..., 𝑎𝑛)↦ ⟨︀𝑢𝑓 ⧹︀𝜌

An environment 𝑠 of OptiC is translated into an environment 𝜎 of Opti𝜆 by translating
all the values it contains. The interesting case is that of a variable 𝑥 in the OptiC store 𝑠
that corresponds to a pure variable in Opti𝜆. In the store 𝜎 of Opti𝜆, the pure varialbe is
bound to the translation of the value stored in OptiC memory 𝑚 at the address 𝑠(𝑥), that
is, to the value 𝑚(𝑠(𝑥)).

⟨︀𝑠⧹︀𝜌 = {
𝑥↦ ⟨︀𝑚(𝑠(𝑥))⧹︀𝜌 if 𝑥 ∈ Π
𝑥↦ ⟨︀𝑠(𝑥)⧹︀𝜌 otherwise ⋁︀ 𝑥 ∈ 𝑠(︀

A memory 𝑚 of OptiC is translated into an environment 𝑚 of Opti𝜆 by translating all
the values it contains. The entries that correspond to the representation of pure variables
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⟨︀𝑢⧹︀& = 𝑡 where ⟨︀𝑢⧹︀ is (guaranteed to be) of the form get(𝑡)

⟨︀𝑥⧹︀ = ⋁︀
𝑥 if 𝑥 ∈ Π
get(𝑥) otherwise

⟨︀𝑏⧹︀ = 𝑏

⟨︀𝑛⧹︀ = 𝑛

⟨︀𝑢1 + 𝑢2⧹︀ = add(⟨︀𝑢1⧹︀, ⟨︀𝑢2⧹︀)

⟨︀&𝑢⧹︀ = ⟨︀𝑢⧹︀&

⟨︀*𝑢⧹︀ = get(⟨︀𝑢⧹︀)
⟨︀𝑢1 = 𝑢2⧹︀ = set(⟨︀𝑢1⧹︀

&, ⟨︀𝑢2⧹︀)

⟨︀𝑢1 += 𝑢2⧹︀ = inplaceAdd (⟨︀𝑢1⧹︀
&, ⟨︀𝑢2⧹︀)

⟨︀𝑢0(𝑢1, ..., 𝑢𝑛)⧹︀ = ⟨︀𝑢0⧹︀(⟨︀𝑢1⧹︀, ..., ⟨︀𝑢𝑛⧹︀)

⟨︀𝑇 const𝑥 = 𝑢⧹︀ = let⟨︀𝑇 ⧹︀typ 𝑥 = ⟨︀𝑢⧹︀ (𝑥 ∈ Π)

⟨︀𝑇 𝑥 = 𝑢⧹︀ = letptr(⟨︀𝑇 ⧹︀typ) 𝑥 = ref⟨︀𝑇 ⧹︀typ(⟨︀𝑢⧹︀) (𝑥 ∉ Π)

⟨︀𝑇 𝑥⧹︀ = letptr(⟨︀𝑇 ⧹︀typ) 𝑥 = stackCell⟨︀𝑇 ⧹︀typ() (𝑥 ∉ Π)

⟨︀𝑢0 ?𝑢1 :𝑢2⧹︀ = if?: ⟨︀𝑢0⧹︀ then ⟨︀𝑢1⧹︀ else ⟨︀𝑢2⧹︀

⟨︀if 𝑢0 then 𝑢1 else 𝑢2⧹︀ = if ⟨︀𝑢0⧹︀ then ⟨︀𝑢1⧹︀ else ⟨︀𝑢2⧹︀

⟨︀if 𝑢0 then 𝑢1⧹︀ = if ⟨︀𝑢0⧹︀ then ⟨︀𝑢1⧹︀ else {}∅

⟨︀𝑢1 &&𝑢2⧹︀ = ⋁︀
and(⟨︀𝑢1⧹︀, ⟨︀𝑢2⧹︀) if 𝑢1 and 𝑢2 are values
if&& ⟨︀𝑢1⧹︀ then ⟨︀𝑢2⧹︀ else false otherwise

⟨︀𝑢1 ||𝑢2⧹︀ = ⋁︀
or(⟨︀𝑢1⧹︀, ⟨︀𝑢2⧹︀) if 𝑢1 and 𝑢2 are values
if|| ⟨︀𝑢1⧹︀ then true else ⟨︀𝑢2⧹︀ otherwise

⟨︀{𝑢1; ...;𝑢𝑛; 𝑞}⧹︀ = {⟨︀𝑢1⧹︀
void; ...; ⟨︀𝑢𝑛⧹︀

void; ⟨︀𝑞⧹︀res}

⟨︀𝑢⧹︀void = ⋁︀
⟨︀𝑢⧹︀ if 𝑢 is of type void
ignore(⟨︀𝑢⧹︀) otherwise

⟨︀∅⧹︀res = ∅

⟨︀return;⧹︀res = ∅ret

⟨︀𝑢; ⧹︀res = ⋁︀
𝑥 if ⟨︀𝑢⧹︀ is a variable 𝑥
letres 𝑥 = ⟨︀𝑢⧹︀; 𝑥 otherwise

⟨︀return𝑢; ⧹︀res = (⟨︀𝑢; ⧹︀res)ret

⟨︀𝑇0 𝑓(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓 ⧹︀ = let(⟨︀𝑇1⧹︀typ×...×⟨︀𝑇𝑛⧹︀typ)→⟨︀𝑇0⧹︀typ 𝑓 = fun(𝑎1, ..., 𝑎𝑛)↦ ⟨︀𝑢𝑓 ⧹︀

⟨︀(︀&⌋︀(𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛)𝑢𝑓 ⧹︀ = fun◻(𝑎1, ..., 𝑎𝑛)↦ ⟨︀𝑢𝑓 ⧹︀

⟨︀𝑇*⧹︀typ = ptr(⟨︀𝑇 ⧹︀)typ

⟨︀int⧹︀typ = int
⟨︀bool⧹︀typ = bool
⟨︀fun<𝑇0(𝑇1, ..., 𝑇𝑛)>⧹︀typ = (⟨︀𝑇1⧹︀

typ × ... × ⟨︀𝑇𝑛⧹︀
typ)→ ⟨︀𝑇0⧹︀

typ

Figure 5. Translation from OptiC to Opti𝜆. A global, precomputed set Π contains the
identifiers of all pure variables—in OptiTrust, variables carry unique identifiers
in addition to their names. Superscripts on 𝜆-terms represent style annotations
for translating back to OptiC.
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are dropped. These entries can be identified by the fact that the corresponding addresses
are not bound in the relocation map 𝜌.

⟨︀𝑚⧹︀𝜌 = {𝜌(𝑙)↦ ⟨︀𝑚(𝑙)⧹︀𝜌 ⋃︀ 𝑙 ∈𝑚 ∩ 𝜌}

We next define the simulation relations, which we use to state and prove the theorem
capturing the correctness of the encoding. The first relation relates pairs of stores and
memories of the two languages. The second relation relates output configurations of the two
languages.

(𝜎, 𝜇) ∼ (𝑠, 𝑚) ⇔ ∃𝜌. 𝜌 ⋉ (𝑠, 𝑚, Π) ∧ 𝜎 = ⟨︀𝑠⧹︀𝜌 ∧ 𝜇 = ⟨︀𝑚⧹︀𝜌

𝑤⇑𝜎𝜇 ∼ 𝑣⇑
𝑠
𝑚 ⇔ ∃𝜌. 𝜌 ⋉ (𝑠, 𝑚, Π) ∧ 𝜎 = ⟨︀𝑠⧹︀𝜌 ∧ 𝜇 = ⟨︀𝑚⧹︀𝜌 ∧ 𝑤 = ⟨︀𝑣⧹︀𝜌

To simplify the correctness theorems, we assume that the semantics are completed with
error-propagation rules, in such a way that a configuration is never stuck, but can always
evaluate to an error. To that end, we follow the presentation of pretty-big-step seman-
tics [Cha13] and introduce the notion of outcome. The evaluation judgement for Opti𝜆 takes
the form 𝑡⇑𝜎𝜇 ⇓ 𝜔, where 𝜔 is either a final configuration or an error, written err. Likewise, the
evaluation judgement OptiC takes the form 𝑢⇑𝑠𝑚 ⇓ 𝑜, where 𝑜 denotes a final configuration
or an error. We extend our simulation relation for output configurations to consider that
error states are related, that is, err ∼ err.

We are now ready to state the correctness theorem. For simplicity, we focus our attention
on terminating programs only.

Proposition 1 (Correctness of the encoding). For any OptiC program 𝑢, if there exists:

• 𝜎, 𝜇, 𝑠, 𝑚 such that (𝜎, 𝜇) ∼ (𝑠, 𝑚),

• 𝜔 and 𝑜 such that either (𝑢⇑𝑠𝑚 ⇓ 𝑜) ∧ (⟨︀𝑢⧹︀⇑
𝜎
𝜇 ⇓ 𝜔), or (𝑢⇑𝑠𝑚 ⇓

& 𝑜) ∧ (⟨︀𝑢⧹︀&⇑𝜎𝜇 ⇓ 𝜔),

then 𝜔 ∼ 𝑜 holds.

At this stage, we only give the sketch of a proof for this proposition. The intuition is that
it can be proven by induction on the structure of the program 𝑢 and then in each case, the
reduction properties can be inverted to constrain 𝜔 and 𝑜 enough to be able to either show
that they both are errors, or that we can derive the expected conclusion. For the induction
to go through, the relocation map 𝜌 needs to be explicited, and one needs to argue that the
relocation map involved for justifying the output simulation is an extension of the relocation
map involved for justifying the input simulation. To get confidence in the theorem, such a
proof ought to be checked using a proof assistant. We leave this task to future work.

6 Translation from Opti𝜆 back to OptiC
This section defines the reciprocal translation, which we call decoding. Figure 6 defines
this decoding operation. The notation [︂𝑡⌉︂ denotes the decoding of an Opti𝜆 term 𝑡. The
notation [︂𝑡⌉︂* denotes an auxiliary operation for decoding terms that will appear in left-value
contexts. We express the correctness property of decoding similarly as for encoding.

Proposition 2 (Correctness of decoding). For any Opti𝜆 program 𝑡, if there exists:

• 𝜎, 𝜇, 𝑠, 𝑚 such that (𝜎, 𝜇) ∼ (𝑠, 𝑚),

• 𝜔 such that 𝑡⇑𝜎𝜇 ⇓ 𝜔,

• 𝑜 such that either [︂𝑡⌉︂⇑𝑠𝑚 ⇓ 𝑜, or [︂𝑡⌉︂*⇑𝑠𝑚 ⇓
& 𝑜,

then 𝜔 ∼ 𝑜 holds.
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[︂𝑡⌉︂* = ⋁︀
𝑢 if [︂𝑡⌉︂ is of the form &𝑢
*[︂𝑡⌉︂ otherwise

[︂𝑥⌉︂ = ⋁︀
𝑥 if 𝑥 ∈ Π
&𝑥 otherwise

[︂𝑏⌉︂ = 𝑏

[︂𝑛⌉︂ = 𝑛

[︂add(𝑡1, 𝑡2)⌉︂ = [︂𝑡1⌉︂ + [︂𝑡2⌉︂

[︂get(𝑡)⌉︂ = [︂𝑡⌉︂*

[︂set(𝑡1, 𝑡2)⌉︂ = [︂𝑡1⌉︂
* = [︂𝑡2⌉︂

[︂inplaceAdd (𝑡1, 𝑡2)⌉︂ = [︂𝑡1⌉︂
* += [︂𝑡2⌉︂

[︂𝑡0(𝑡1, ..., 𝑡𝑛)⌉︂ = [︂𝑡0⌉︂([︂𝑡1⌉︂, ..., [︂𝑡𝑛⌉︂)

[︂letptr(𝜏) 𝑥 = stackCell()⌉︂ = [︂𝜏⌉︂typ 𝑥; (𝑥 ∉ Π)

[︂letptr(𝜏) 𝑥 = ref(𝑡)⌉︂ = [︂𝜏⌉︂typ 𝑥 = [︂𝑡⌉︂; (𝑥 ∉ Π)

[︂let𝜏 𝑥 = 𝑡⌉︂ = [︂𝜏⌉︂typ const𝑥 = [︂𝑡⌉︂; (𝑥 ∈ Π)

[︂and(𝑡1, 𝑡2)⌉︂ = [︂𝑡1⌉︂&& [︂𝑡2⌉︂
[︂or(𝑡1, 𝑡2)⌉︂ = [︂𝑡1⌉︂|| [︂𝑡2⌉︂
[︂if&& 𝑡1 then 𝑡2 else false⌉︂ = [︂𝑡1⌉︂&& [︂𝑡2⌉︂

[︂if|| 𝑡1 then true else 𝑡2⌉︂ = [︂𝑡1⌉︂|| [︂𝑡2⌉︂
[︂if 𝑡0 then 𝑡1 else {}∅⌉︂ = if [︂𝑡0⌉︂ then [︂𝑡1⌉︂

[︂if?: 𝑡0 then 𝑡1 else 𝑡2⌉︂ = [︂𝑡0⌉︂? [︂𝑡1⌉︂: [︂𝑡2⌉︂

[︂if 𝑡0 then 𝑡1 else 𝑡2⌉︂ = ⋁︀
[︂𝑡0⌉︂? [︂𝑡1⌉︂: [︂𝑡2⌉︂ if type is not unit
if [︂𝑡0⌉︂ then [︂𝑡1⌉︂ else [︂𝑡2⌉︂ otherwise

[︂{𝑡1; ...; 𝑡𝑛; let
res 𝑥 = 𝑡𝑟;𝑥

ret}⌉︂ = {[︂𝑡1⌉︂; ...; [︂𝑡𝑛⌉︂; return [︂𝑡𝑟⌉︂;}
[︂{𝑡1; ...; 𝑡𝑛; let

res 𝑥 = 𝑡𝑟;𝑥}⌉︂ = {[︂𝑡1⌉︂; ...; [︂𝑡𝑛⌉︂; [︂𝑡𝑟⌉︂;}

[︂ignore(𝑡)⌉︂ = [︂𝑡⌉︂

[︂{𝑡1; ...; 𝑡𝑛; 𝑟}⌉︂ = {[︂𝑡1⌉︂; ...; [︂𝑡𝑛⌉︂; [︂𝑟⌉︂
res;}

[︂∅ret⌉︂res = return;
[︂∅⌉︂res = ∅

[︂𝑥ret⌉︂res = return𝑥;

[︂𝑥⌉︂res = 𝑥;

[︂let(𝜏1×...×𝜏𝑛)→𝜏0 𝑓 = fun𝐴
(𝑎1, ..., 𝑎𝑛)↦ 𝑡𝑓 ⌉︂ = [︂𝜏0⌉︂

typ 𝑓([︂𝜏1⌉︂
typ 𝑎1, ..., [︂𝜏𝑛⌉︂

typ 𝑎𝑛) [︂𝑡𝑓 ⌉︂ if ◻ ∉ 𝐴
[︂fun◻(𝑎1𝜏1 , ..., 𝑎𝑛𝜏𝑛)↦ 𝑡𝑓 ⌉︂ = (︀&⌋︀([︂𝜏1⌉︂

typ 𝑎1, ..., [︂𝜏𝑛⌉︂
typ 𝑎𝑛) [︂𝑡𝑓 ⌉︂

[︂ptr(𝜏)⌉︂typ = [︂𝜏⌉︂typ*
[︂int⌉︂typ = int
[︂bool⌉︂typ = bool
[︂(𝜏1 × ... × 𝜏𝑛)→ 𝜏0⌉︂

typ = fun<[︂𝜏0⌉︂typ([︂𝜏1⌉︂typ, ..., [︂𝜏𝑛⌉︂typ)>

Figure 6. Translation from OptiTrust’s internal 𝜆-calculus back to C. A global, precom-
puted set Π contains the identifiers of all pure variables—in OptiTrust, variables
carry unique identifiers in addition to their names. Style annotation constraint
are silently ignored if no rule matches.
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As mentioned earlier, during the encoding, a number of style annotations are attached to
the terms produced, in order to guide the decoding phase and ensure the round-trip property.
Importantly, these annotations are always ignored by the semantics. It is therfore always
safe to drop annotations in the OptiTrust AST. Ignoring style annotatins may even be
necessary. Consdier for example a transformation that rewrites “𝑡0; if 𝑡𝑐 then {𝑡1} else {}∅”
into “ if 𝑡𝑐 then {𝑡0; 𝑡1} else {𝑡0}

∅”, where the symbol ∅ in the input term indicates that
the else branch was absent from the OptiC code. There, the resulting term is a nonempty
else branch, hence the annotation ∅ must be discarded.

There is one limitation with the current style annotation system expressed by the notion
of spurious pattern, which consists of an occurrence of an expression of the form &*u or *&u .
Such spurious patterns are eliminated during the process of encoding a program and do not
generate any annotation. Even though we could design a style annotation that preserves
spurious patterns, we believe that it is not worth the extra work, because spurious patterns
usually do not appear in human-written source programs.

We are now ready to state the round-trip property of our bidirectional translation.

Proposition 3 (Round-trip for OptiC programs). If 𝑢 is an OptiC program that does not
contain spurious patterns, and such that its encoding ⟨︀𝑢⧹︀ is well-defined, then decoding
gives back the original program: [︂⟨︀𝑢⧹︀⌉︂ = 𝑢.

Like in the previous section, actual mechanized proofs of the decoding correctness and
the round-trip property are left for future work.

Note that this roundtrip theorem is defined at the level of the ASTs. In our current
implementation, comments, blank lines, indentation, and macro expansions, are not part
of the AST. Hence, they are not preserved by our translations. Indentation is not much
an issue for users using code formatters. Comments and blank lines could be attached to
AST nodes, as style annotation, if need be. Macros would be trickier to handle. One could
imagine a best-effort algorithm, which folds back macros for parts of the AST that have not
been altered by the transformations.

7 Future Work
In this paper, we have presented the semantics of the languages manipulated by our
interactive optimizing compiler OptiTrust. We have described how to seamlessly translate
from one the other. We showed in previous works [BCK+24] that OptiTrust can be used to
reach state-of-the-art performance starting from naive implementations.

This paper focuses on the bidirectional translation from a language the resembles C code.
Presumably, the ideas and translation schemes described in this paper could be applied
to build bidirectional translations from other user-facing languages, such as OCaml, Rust,
OpenCL/Cuda, Java, etc. Once such a translation is defined for another language, all the
code transformations in OptiTrust, which are expressed on the Opti𝜆 language, become
available for this new language. Going one step further, we also envision the possibility to
translate between different user-facing languages.
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