Machine-Checked Verification of the
Correctness and Amortized Complexity of an
Efficient Union-Find Implementation

Arthur Charguéraud

joint work with Francois Pottier
Inria

2015/08/25

1/22

Union-Find data structure

Ry G
{ g up
a0 -

type elem

val make : unit -> elem

val find : elem -> elem

val union : elem -> elem -> elem

2/22

Implementation

Pointer-based Union-Find, with path compression and union by rank:

type rank = int
type elem = content ref
and content =

| Link of elem

| Root of rank

let make () = ref (Root 0)

let rec find x =
match !x with

| Root _ -> x

| Link y ->
let z = find y in
x := Link z;
z

let link x y =
if x == y then x else
match !x, !y with
| Root rx, Root ry ->

|

let union x y = link (find x) (find y)

if rx < ry then begin

x := Link y;
y
end else if rx > ry then begin
y := Link x;
X
end else begin
y := Link x;
x := Root (rx+1);
X
end

-> assert false

R -

3/22

Union-Find analysis

Tarjan (1975): the amortized cost of find is O(a(n)).

Quasi-constant cost, since a(n) < 5 for all practical purposes.

A()((L') = x+1
Appa(z) = A" (@) — Ap(AR(A(@))) (o 41 times)

a(n) = min{k|Ax(1) = n}

— In this work: the first mechanized complexity analysis of Union-Find.

Following proof from 1999, published in Introduction to Algorithms, 3rd
ed.

4/22

Verification tool

We extend the CFML tool with time credits, to allow for the formalization
of amortized complexity analyses for arbitrarily-complex OCaml programs.

Design space:
» Verification ignoring the complexity.
» Verification including the complexity:

» Proof only at the level of the mathematical abstractions.
» Proof also connecting to the source code:

» with emphasis on automation (e.g., RAML project);
» with emphasis on expressiveness (Atkey and this work).

5/22

Contents of the talk

1. Statement of specifications.

2. Separation Logic with time credits.

3. Characteristic formulae with time credits.
4. Invariant and potential for Union-Find.

5. Verification proofs.

6/22

Specification of find

Theorem find_spec : YWNDR x, x €D —
App find x
(UF NDR *$(alpha N + 2))
(funr =UF NDR *\[r =R x]).

» D is the set of all elements, i.e. the domain.
» N is a bound on the cardinality of the domain.

» R maps elements to their corresponding roots.

» "UF N D R" denotes the invariant on the state.

where App has type:

VA B. Func — A — (Heap — Prop) — (B — Heap — Hprop) — Prop.

7/22

Separation Logic

Heap predicates:
H : Heap — Prop

Core definitions:

] = M. h=0

[P] = M.h=g AP

Hl*Hg = M. E|h1h2. hlJ_hQ/\h:hlk‘UhQ/\thl /\thg
Jx. H = M. dz.Hh

l—wv = M. h=(l~0)

— Formalization in Coq following that of Ynot (Chlipala et al, 2009).

8/22

Principle of time credits

Time credits:

$n : Heap — Prop where n € N
Properties:

$(n+n') =9%$n » $n' and $0 =[]

Principle:

Ensure that every beta-reduction forces the spending of $1.

Time credits are received in preconditions, are spent on function calls.
They may be stored in the heap for later retrieval and consumption.

Requires a complexity-preserving compiler:

nb machine instructions = O(nb beta-reductions)

9/22

Model of time credits

Without credits:
Heap = (loc — value)

With credits:
Heap

(loc — value) x N

Definition of credits:
$n = AXm,e). m=ZF Anc=n
Earlier definitions are lifted to pairs, e.g.:

(m1,c1) w(mg,c2) = (m1wma, ¢ + c2)

10/22

The CFML approach

(** UnionFind.ml *x*) (** UnionFind_ml.v *%)

let rec find x = Axiom find : Func.

Axiom find_cf : Vx HQ,
(...) > App find x H Q.

(** UnionFind_proof.v #**)
Theorem find_spec : Vx €D,
App find x (...) (...).
Proof.
intros. apply find_cf.

Qe.c.l..

11/22

Characteristic formulae

The characteristic formula of a term ¢, written [t], is a predicate such
that:

VHQ. [tJHQ = {H}i{Q}

In any state satisfying H, t terminates on v, in a state satisfying Q v.

Example definition:

[ti;t2] = AHQ. 3H'. []H (A _.H') A [t2] H' Q

Characteristic formulae: sound and complete, follow the structure of the
code (compositional and linear-sized), and support the frame rule.

12/22

Time credits in characteristic formulae

Goal: ensure that every beta-reduction forces the spending of $1.

Solution: CFML instruments the OCaml code by inserting a call to “pay”
at the head of every function or loop body.

let rec find x =
payO;
match !x with
| Root _ -> x
| Link y -> let z = find y in x := Link z; z

Axiomatic specification of pay:

Apppay () (81) (A_.[])

13/22

Soundness

Theorem (Soundness of characteristic formulae with time credits)

[[t]] HQ t/m Un U/m’wm”
Yme. { = Jnom'dm”. n<e—c

H(m,c) Qu(m',)

14 /22

Union-Find invariant

Definition is_root F x :=Vy, - F x y.

Definition Inv NDF KR =
confined D F A
functional F A
(Vx, path Fx (Rx) A is_root F (R x)) A
(finite D) A
(card D < N) A
(Vx, x¢D >Kx=0) A
Vxy, Fxy >Kx<Ky) A
(V r, is_root Fr —»2"(K r) < card (descendants F r)).

» F describes the edges of the underlying graph.

v

K gives the rank of every element.
» D describes the domain of the elements.
» R maps elements to their corresponding roots.

» N is a bound on the cardinality of the domain.

15/22

Representation predicate

» M maps elements to the contents of the corresponding memory cell.

Definition UF NDR :=dF K V,

(GroupRef M) *\[MemDF KM] «\[Inv NDF KR] »$(Phi D F K N).

Definition Mem D F K M :=
(dom M = D)
A (Vx xeD—
match M[x] with
| Linky =Fxy
| Root k = is_root Fx A k =Kx
end).

16 /22

Definition of the potential on paper

p(x) = parent of x (when z is not a root)

K(z) = rankofuz

ko) = max{k| K(p(@)) > A(K (@)}

i(x) = max{i| K(p(x)) = Ay, (K(x))}
¢(x) = alN) -K(z) if = is a root or has rank 0
o(x) = (a(N)—k(x)) - K(z)—i(z) otherwise

¢ =) o)
zeD

17 /22

Definition of the potential in Coq

Definition p F x := epsilon (funy =F x y).

Definition k F K x := Max (funk =K (p F x) > A k (K x)).
Definition i FK x := Max (fun i =K (p F x) > iter i (A (k FK x)) (K x)).
Definition phi FKN x :=
If (is_root F x) v(K x = 0)
then (alpha N) * (K x)
else (alpha N — k FK x) * (Kx) — (1 FK x).

Definition Phi D F K N := Sum D (phi F K N).

18/22

Amortized analysis

® + amortized cost > @’ + actual cost

In the case of find, we prove:
Phi DFKN + (alpha N+ 2) > Phi DF' KN + (d + 1)
where:
» F describes the graph before the execution of find x,

» F’ denotes the updated graph after the execution of find x,
» d denotes the length of the path from x to its root.

19/22

Verification script

Theorem find_spec : VNDR, x €D —
App find x (UF ND R % $(alpha N + 2)) (funr =UF NDR *\[R x = r]).
Proof.
asserts S (VADRFKF'N,
InvNDFKR >MemDFKM —>x€D »ipcFxdF —
App find x (GroupRef M x $(d+1))
(fun r' = 3IM', GroupRef M' x\[MemD F' K M' A r' =R x])).
{ xinduction_heap Wf_nat.1t_wf. apply find_cf.
intros x d IH. hide IH. introv HI HM Dx HC. credits_split. xpay.
lets HMD: (Mem_dom HM). unfold elem in *.
xapps#. forwards* HV: (Mem_val HM) x. unfold elem in *.
xmatch; rename HO into HK; rewrite «— HK in HV.
(* case root *) (x ... 3 lines not shown ...*)
(* case link *) (* ... 14 lines not shown ...*)
¥
xweaken S'. clear S'. simpl. intros x. intros RS LRS KRS.
introv Dx. unfold UF. xextract as F K M HI HM.
forwards* (d&F'&HC&HP): amortized_cost_of_iterated_path_compression x N.
change (2%nat) with (1+1)%nat. forwards (H'&E): credits_nat_le_rest HP.
xchange E. chsimpl. credits_split. xgc H'. xframe ($ Phi D F' K N).
xapply (>> KRS HI HM Dx HC). change (S d) with (14+d)%nat. chsimpl.
xok. clears RS. intros z. xextract as M' (HM'&Hz). subst z. intros. hsimpl-~.

constructor; eauto using is_rdsf_bw_ipc, bw_ipc_preserves_RF_agreement.
Qed.

20/22

Future work

— State bounds using «(n), instead of a(IN) with the constraint n < N.
— Improve the degree of inference and automation.

— Introduce the big-O notation, to write O(«(n)) instead of 3a(n) + 6.

21/22

Conclusion
An integrated verification framework for proving not just the functional
correctness but also the asymptotic complexity of a concrete program.
TCB: classic Coq + CFML generator + a complexity-preserving compiler.

Application to the verification of an efficient Union-Find implementation.

http://gallium.inria.fr/"fpottier/dev/uf/

Thanks!

22/22

http://gallium.inria.fr/~fpottier/dev/uf/

