
Machine-Checked Verification of the
Correctness and Amortized Complexity of an

Efficient Union-Find Implementation

Arthur Charguéraud
joint work with François Pottier

Inria

2015/08/25

1 / 22

Union-Find data structure

type elem
val make : unit -> elem
val find : elem -> elem
val union : elem -> elem -> elem

2 / 22

Implementation

Pointer-based Union-Find, with path compression and union by rank:

type rank = int

type elem = content ref

and content =
| Link of elem
| Root of rank

let make () = ref (Root 0)

let rec find x =
match !x with
| Root _ -> x
| Link y ->

let z = find y in
x := Link z;
z

let link x y =
if x == y then x else
match !x, !y with
| Root rx, Root ry ->

if rx < ry then begin
x := Link y;
y

end else if rx > ry then begin
y := Link x;
x

end else begin
y := Link x;
x := Root (rx+1);
x

end
| _, _ -> assert false

let union x y = link (find x) (find y)

3 / 22

Union-Find analysis

Tarjan (1975): the amortized cost of find is Opαpnqq.

Quasi-constant cost, since αpnq ď 5 for all practical purposes.

A0pxq ” x` 1

Ak`1pxq ” A
px`1q
k pxq “ AkpAkp...Akpxq...qq (x` 1 times)

αpnq ” mintk |Akp1q ě nu

Ñ In this work: the first mechanized complexity analysis of Union-Find.

Following proof from 1999, published in Introduction to Algorithms, 3rd
ed.

4 / 22

Verification tool

We extend the CFML tool with time credits, to allow for the formalization
of amortized complexity analyses for arbitrarily-complex OCaml programs.

Design space:

§ Verification ignoring the complexity.

§ Verification including the complexity:

§ Proof only at the level of the mathematical abstractions.
§ Proof also connecting to the source code:

§ with emphasis on automation (e.g., RAML project);
§ with emphasis on expressiveness (Atkey and this work).

5 / 22

Contents of the talk

1. Statement of specifications.

2. Separation Logic with time credits.

3. Characteristic formulae with time credits.

4. Invariant and potential for Union-Find.

5. Verification proofs.

6 / 22

Specification of find

Theorem find_spec : @N D R x, x P D Ñ
App find x
(UF N D R ‹ $(alpha N + 2))
(fun r ñ UF N D R ‹ \[r = R x]).

§ D is the set of all elements, i.e. the domain.
§ N is a bound on the cardinality of the domain.
§ R maps elements to their corresponding roots.
§ “UFN DR” denotes the invariant on the state.

where App has type:

@AB. FuncÑ AÑ pHeapÑ Propq Ñ pB Ñ HeapÑ Hpropq Ñ Prop.

7 / 22

Separation Logic

Heap predicates:
H : HeapÑ Prop

Core definitions:

r s ” λh. h “ H

rP s ” λh. h “ H ^ P

H1 ‹H2 ” λh. Dh1h2. h1 K h2 ^ h “ h1 Z h2 ^ H1 h1 ^ H2 h2
DDx.H ” λh. Dx. H h

l ãÑ v ” λh. h “ pl ÞÑ vq

Ñ Formalization in Coq following that of Ynot (Chlipala et al, 2009).

8 / 22

Principle of time credits
Time credits:

$n : HeapÑ Prop where n P N

Properties:

$pn` n1q “ $n ‹ $n1 and $ 0 “ r s

Principle:

Ensure that every beta-reduction forces the spending of $1.

Time credits are received in preconditions, are spent on function calls.
They may be stored in the heap for later retrieval and consumption.

Requires a complexity-preserving compiler:

nb machine instructions = O(nb beta-reductions)

9 / 22

Model of time credits

Without credits:
Heap ” ploc ÞÑ valueq

With credits:
Heap ” ploc ÞÑ valueq ˆ N

Definition of credits:

$n ” λpm, cq. m “ H ^ c “ n

Earlier definitions are lifted to pairs, e.g.:

pm1, c1q Z pm2, c2q ” pm1 Zm2, c1 ` c2q

10 / 22

The CFML approach

(** UnionFind.ml **)

let rec find x =
...

(** UnionFind_ml.v **)

Axiom find : Func.

Axiom find_cf : @x H Q,
(...) Ñ App find x H Q.

(** UnionFind_proof.v **)

Theorem find_spec : @x P D,
App find x (...) (...).

Proof.
intros. apply find_cf.
...

Qed.

11 / 22

Characteristic formulae

The characteristic formula of a term t, written JtK, is a predicate such
that:

@HQ. JtKH Q ñ tHu t tQu

In any state satisfying H, t terminates on v, in a state satisfying Qv.

Example definition:

Jt1 ; t2K ” λHQ. DH 1. Jt1KH pλ_. H 1q ^ Jt2KH 1Q

Characteristic formulae: sound and complete, follow the structure of the
code (compositional and linear-sized), and support the frame rule.

12 / 22

Time credits in characteristic formulae

Goal: ensure that every beta-reduction forces the spending of $1.

Solution: CFML instruments the OCaml code by inserting a call to “pay”
at the head of every function or loop body.

let rec find x =
pay();
match !x with
| Root _ -> x
| Link y -> let z = find y in x := Link z; z

Axiomatic specification of pay:

App pay pq p$ 1q pλ_. r sq

13 / 22

Soundness

Theorem (Soundness of characteristic formulae with time credits)

@mc.

#

JtKH Q

H pm, cq
ñ Dnvm1c1m2.

$

’

&

’

%

t{m ó
n v{m1Zm2

n ď c´ c1

Qv pm1, c1q

14 / 22

Union-Find invariant

Definition is_root F x := @y, F x y.

Definition Inv N D F K R :=
confined D F ^
functional F ^
(@ x, path F x (R x) ^ is_root F (R x)) ^
(finite D) ^
(card D ď N) ^
(@ x, x R D Ñ K x = 0) ^
(@ x y, F x y Ñ K x < K y) ^
(@ r, is_root F r Ñ 2^(K r) ď card (descendants F r)).

§ F describes the edges of the underlying graph.
§ K gives the rank of every element.
§ D describes the domain of the elements.
§ R maps elements to their corresponding roots.
§ N is a bound on the cardinality of the domain.

15 / 22

Representation predicate

§ M maps elements to the contents of the corresponding memory cell.

Definition UF N D R := DDF K M,
(GroupRef M) ‹ \[Mem D F K M] ‹ \[Inv N D F K R] ‹ $(Phi D F K N).

Definition Mem D F K M :=
(dom M = D)

^ (@ x, x P D Ñ
match M[x] with
| Link y ñ F x y
| Root k ñ is_root F x ^ k = K x
end).

16 / 22

Definition of the potential on paper

ppxq ” parent of x (when x is not a root)
Kpxq ” rank of x
kpxq ” maxtk |Kpppxqq ě AkpKpxqqu

ipxq ” maxti |Kpppxqq ě A
piq
kpxqpKpxqqu

φpxq ” αpNq ¨Kpxq if x is a root or has rank 0
φpxq ” pαpNq ´ kpxqq ¨Kpxq ´ ipxq otherwise

Φ ”
ÿ

xPD

φpxq

17 / 22

Definition of the potential in Coq

Definition p F x := epsilon (fun y ñ F x y).

Definition k F K x := Max (fun k ñ K (p F x) ě A k (K x)).
Definition i F K x := Max (fun i ñ K (p F x) ě iter i (A (k F K x)) (K x)).

Definition phi F K N x :=
If (is_root F x) _(K x = 0)
then (alpha N) ∗ (K x)
else (alpha N ´ k F K x) ∗ (K x) ´ (i F K x).

Definition Phi D F K N := Sum D (phi F K N).

18 / 22

Amortized analysis

Φ` amortized cost ě Φ1 ` actual cost

In the case of find, we prove:

Phi D F K N + (alpha N + 2) ě Phi D F’ K N + (d + 1)

where:
§ F describes the graph before the execution of find x,
§ F’ denotes the updated graph after the execution of find x,
§ d denotes the length of the path from x to its root.

19 / 22

Verification script
Theorem find_spec : @N D R, x P D Ñ
App find x (UF N D R ‹ $(alpha N + 2)) (fun r ñ UF N D R ‹ \[R x = r]).

Proof.
asserts S’: (@ d D R F K F’ M,
Inv N D F K R Ñ Mem D F K M Ñ x P D Ñ ipc F x d F’ Ñ
App find x (GroupRef M ‹ $(d+1))

(fun r’ ñDDM’, GroupRef M’ ‹ \[Mem D F’ K M’ ^ r’ = R x])).
{ xinduction_heap Wf_nat.lt_wf. apply find_cf.
intros x d IH. hide IH. introv HI HM Dx HC. credits_split. xpay.
lets HMD: (Mem_dom HM). unfold elem in ∗.
xapps∗. forwards∗ HV: (Mem_val HM) x. unfold elem in ∗.
xmatch; rename H0 into HK; rewrite Ð HK in HV.
(* case root *) (* ... 3 lines not shown ...*)
(* case link *) (* ... 14 lines not shown ...*)

}
xweaken S’. clear S’. simpl. intros x. intros RS LRS KRS.
introv Dx. unfold UF. xextract as F K M HI HM.
forwards∗ (d&F’&HC&HP): amortized_cost_of_iterated_path_compression x N.
change (2%nat) with (1+1)%nat. forwards (H’&E): credits_nat_le_rest HP.
xchange E. chsimpl. credits_split. xgc H’. xframe ($ Phi D F’ K N).
xapply (>> KRS HI HM Dx HC). change (S d) with (1+d)%nat. chsimpl.
xok. clears RS. intros z. xextract as M’ (HM’&Hz). subst z. intros. hsimpl̃ .
constructor; eauto using is_rdsf_bw_ipc, bw_ipc_preserves_RF_agreement.

Qed.

20 / 22

Future work

– State bounds using αpnq, instead of αpNq with the constraint n ď N .

– Improve the degree of inference and automation.

– Introduce the big-O notation, to write Opαpnqq instead of 3αpnq ` 6.

21 / 22

Conclusion

An integrated verification framework for proving not just the functional
correctness but also the asymptotic complexity of a concrete program.

TCB: classic Coq + CFML generator + a complexity-preserving compiler.

Application to the verification of an efficient Union-Find implementation.

http://gallium.inria.fr/~fpottier/dev/uf/

Thanks!

22 / 22

http://gallium.inria.fr/~fpottier/dev/uf/

