Solution for Wand.Hwand.hwand_inv
introv M2 M1 D. unfolds hwand. lets (H0&M3): hexists_inv M2.
lets (h0&h3&P1&P3&D'&U): hstar_inv M3. lets (P4&E3): hpure_inv P3.
subst h2 h3. rewrite union_empty_r in *. applys P4. applys* hstar_intro.
Qed.
Click on the 'Next' button to reveal the proof step by step.
Please provide feedback