
Functional Translation of a Calculus of Capabilities
–Technical Appendix–

Arthur Charguéraud

INRIA

arthur.chargueraud@inria.fr

François Pottier

INRIA

francois.pottier@inria.fr

1. Source and target language

Figures 1 and 2 give the syntax and semantics of the imperative
source language. Figures 3 and 4 give the syntax and semantics of
the functional target language.

Values v := x | () | injiv | (v1, v2) | µf.λx.t | p | l
Prim. ops. p := case | proji | ref | get | set
Terms t := v | (v t)

Figure 1. Source language syntax

((µf.λx.t) v) / s −→ ([f → µf.λx.t] [x → v] t) / s
(case ((inji v), v1, v2)) / s −→ (vi v) / s
(proji (v1, v2)) / s −→ vi / s
(ref v) / s −→ l / s ⊎ [l 7→ v]
(get l) / s −→ s[l] / s
(set (l, v)) / s −→ () / s[l 7→ v]
(v t) / s −→ (v t′) / s′ if (t / s −→ t / s′)

Figure 2. Source language semantics

Values w := x | () | inji w | (w1, w2) | µf.λx.t | q | k | m
Prim. ops. q := case | proji |

map fresh | map add | map get | map set
Terms u := w | (w u)

Figure 3. Target language syntax

2. Syntax and kinds of types

Figure 5 gives the underlying syntax of typing entities, and Figure 6
define kinds on the top of this syntax. Figure 7 associates conven-
tional metavariables to each kind. Figure 8 defines the translation
of typing entities towards System F types and environments.

[copyright notice will appear here]

(µf.λx.u) w −→ [f → µf.λx.u][x → w] u
proji (w1, w2) −→ wi

case (inji w, w1, w2) −→ (wi w)
map fresh m −→ min {k | k 6∈ dom(m)}
map add (m, k, w) −→ m ⊎ [k 7→ w]
map get (m, k) −→ m[k]
map set (m, k, w) −→ m[k 7→ w]
(w u) −→ (w u′) if (u −→ u′)

Figure 4. Target language semantics

o := α | ⊥ | ⊤ | unit | [o] | o + o | o × o | o → o | ref o |
o ∗ o | ∀α.o | ∃α.o | µα.o | ∅ | {o : o} | {o : o \ o} |
∅ | o, α | o, x : o

κ := VAL | MEM | CMP | CAP | SNG | GRP | DNV | LNV

Figure 5. Underlying syntax of types, capabilities and environ-
ments

(τ : VAL) (θ : MEM) (χ : CMP) (C : CAP)

(σ : SNG) (ρ : GRP) (∆ : DNV) (Γ : LNV)

Figure 7. Metavariables

3. Typing judgments

We first introduce structures that are used to state typing judg-
ments.

− µ describes the shape of regions as follows:

− µ maps each singleton region σ to a value v, which we write
v = µ[σ].

− µ maps each group region ρ to a map from keys to values, and
we write v = µ[ρ][k].

− P stands for a set of locations and region names, and is used to
describe the data posessed by a given capability.

− Σ stands for a set of subtyping hypotheses, so that each of its

item is a proposition of the form o1 ≤ o2 ⊲ w .

Figure 9 summarizes all the judgments involved. On gray back-
ground is the translation specific material. There are four subtyping
relations, a typing judgment for source values and terms (mutually
recursive), a typing judgment for memory values and capabilities

1 2008/4/2

(mutually recursive), plus a typing judgment used to type-check an
closed term when it is executed, and a typing judgment used to
type-check closed values that programs output.

subtyping values Σ ⊢ τ1 ≤ τ2 ⊲ w

subtyping computations Σ ⊢ χ1 ≤ χ2 ⊲ w

subtyping memory values Σ ⊢ θ1 ≤ θ2 ⊲ w

subtyping capabilities Σ ⊢ C1 ≤ C2 ⊲ w

typing values µ; ∆ ⊢ v : τ ⊲ w

typing terms µ; Γ t : χ ⊲ u

typing memory values s; µ ⊢ v : θ ∠ P ⊲ w

typing capabilities s; µ ⊢ C ∠ P ⊲ w

typing executed terms s; µ; ᾱ; P ||= t : χ ⊲ u

typing output values s; µ; ᾱ; P |= v : χ ⊲ w

Figure 9. Judgments

Light versions of subtyping judgments and of typing judgments
are defined as follows.

τ1 ≤ τ2 ⊲ w stands for ∀Σ, Σ ⊢ τ1 ≤ τ2 ⊲ w

∆ ⊢ v : τ ⊲ w stands for ∀µ, µ; ∆ ⊢ v : τ ⊲ w

4. Typing source programs

Rules from figures 10 to 15 are used to type-check source pro-
grams.

In Figure 15, abbreviations are used to combine functions. They
are defined below.

id := λx. x
w1 ◦ w2 := λx. w1 (w2 x)
w1 × w2 := λ(x1, x2). (w1 x1, w2 x2)
w1 + w2 := λx. case ((λx1. inj1 (w1 x1)),

(λx2. inj2 (w2 x2)), x)

5. Typing runtime configurations

Figures 16 adds derivation rules for typing of values at runtime.
Figures 17 and 18 define together the judgments for typing capa-
bilities and values in memories. Figure 19 defines the judgments
for typing executed terms, and Figure 20 the judgments for typing
output values.

6. Derivable and admissible rules

Figure 21 gives rules that can be added safely to the system. They
add no expressive power, but allow typing programs more conve-
niently (avoiding η and β expansions).

7. Examples

Examples are given through figures 22 to 25.

mlist α := µβ.ref (unit + α × β)

⊲ µβ.(unit + α × β) = list α

nil : ∀α. unit → ∃σ.[σ] ∗ {σ : mlist α}

⊲ ∀α. unit → unit × list α

:= λ().ref (inj1 ())

⊲ λ().((), inj1 ())

cons : ∀α σ1 σ2. [σ1] × [σ2] ∗ {σ1 : α} ∗ {σ2 : mlist α}
→ ∃σ.[σ] ∗ {σ : mlist α}

⊲ ∀α.unit × unit × α × list α → unit × list α

:= λ(h, t).ref (inj2 (h, t))

⊲ λ((), (), h, t).((), (inj2 (h, t)))

reverse : ∀σ α.[σ] ∗ {σ : mlist α} → ∃σ′.[σ′] ∗ {σ′ : mlist α}

⊲ ∀α.unit × list α → unit × list α

:= let aux = µ aux.λ(l, p).match (get l) with

| inj1 () ⇒ p
| inj2 (h, t) ⇒ set (l, inj2 (h, p)) ; aux (t, l)

in λl. (aux (l, nil ()))

⊲ let aux = µ aux.λ((), (), l, p).match l with

| inj1 () ⇒ ((), p)
| inj2 (h, t) ⇒

let l′ = inj2 (h, p) in
aux ((), (), t, l′)

in λ((), l). (aux ((), (), l, nil ()))

iter : ∀αβ. (∀σ. [σ] →{σ:α}∗β unit)
→ (∀σ. [σ] →{σ:mlist α}∗β unit)

⊲ ∀αβ. (unit × α × β → unit × α × β)
→ (unit × list α × β → unit × list α × β)

:= λf.µ aux.λl.match (get l) with

| inj1 () ⇒ ()
| inj2 (h, t) ⇒ f h ; aux t

⊲ λf.µ aux.λ((), (e, l)).match l with

| inj1 () ⇒ (e, l)
| inj2 (h, t) ⇒

let (e′, h′) = f ((), (e, h)) in
let (e′′, t′) = aux ((), (e′, t)) in

(e′′, inj2 (h′, t′))

Figure 22. Example: mutable lists

2 2008/4/2

o : VAL

o : CMP

o : VAL

o : MEM ⊥ : VAL ⊤ : VAL unit : VAL

o : κ

[o] : VAL
κ∈{SNG,GRP}

o1 : κ o2 : κ

(o1 + o2) : κ
κ∈{VAL,MEM}

o1 : κ o2 : κ

(o1 × o2) : κ
κ∈{VAL,MEM}

o1 : CMP o2 : CMP

(o1 → o2) : VAL

o : MEM

(ref o) : MEM

o1 : κ o2 : CAP

(o1 ∗ o2) : κ
κ∈{MEM,CAP,CMP}

α has kind κ

α : κ

α : κ1 o : κ2

(∀α.o) : κ2

κ1∈{VAL,MEM,CAP,SNG,GRP}

κ2∈{VAL}

α : κ1 o : κ2

(∃α.o) : κ2

κ1∈{VAL,MEM,CAP,SNG,GRP}

κ2∈{VAL,MEM,CAP,CMP}

α : κ o : κ

(µα.o) : κ
κ∈{VAL,MEM,CAP}

o not a variable or a µ form

∅ : CAP

o1 : κ o2 : MEM

{o1 : o2} : CAP
κ∈{SNG,GRP}

o1 : GRP o2 : MEM o3 : SNG

{o1 : o2 \ o3} : CAP

∅ : κ
κ∈{DNV,LNV}

o : κ1 α : κ2

(o, α) : κ1

κ1∈{DNV,LNV}

κ2∈{VAL,MEM,CAP,SNG,GRP}

α#o

o1 : κ1 o2 : κ2

(o1, x : o2) : κ1

(κ1∈{DNV} ∧ κ2∈{VAL})

or (κ1∈{LNV} ∧ κ2∈{VAL,CMP,CAP})

x#o1 ∧ fv(o2)⊆dom(o1)

Figure 6. Kinds

J⊥K = ⊥
J⊤K = ⊤
JunitK = unit
J [σ] K = unit
J [ρ] K = key

Jo1 + o2K = Jo1K + Jo2K
Jo1 × o2K = Jo1K × Jo2K
Jo1 → o2K = Jo1K → Jo2K
Jref oK = JoK
Jo1 ∗ o2K = Jo1K × Jo2K

J∅K = unit
J{σ : o}K = JoK
J{ρ : o}K = map JoK
J{ρ : o \ σ}K = map JoK × key
J∅K = ∅

Jo1, x : o2K = Jo1K, x : Jo2K

If (α : SNG)
or (α : GRP):
J∀α.oK = JoK
J∃α.oK = JoK
Jµα.oK = JoK
Jo, αK = JoK

Otherwise:
JαK = α
J∀α.oK = ∀α.JoK
J∃α.oK = ∃α.JoK
Jµα.oK = µα.JoK
Jo, αK = JoK, α

Figure 8. Translation of types, capabilities and environments

UNIT

∆ ⊢ () : unit ⊲ ()

INJ

∆ ⊢ v : τi ⊲ w

∆ ⊢ (inj
i v) : (τ1 + τ2) ⊲ (inj

i w)

PAIR

∆ ⊢ v1 : τ1 ⊲ w1 ∆ ⊢ v2 : τ2 ⊲ w2

∆ ⊢ (v1, v2) : (τ1 × τ2) ⊲ (w1, w2)

VAR

(x : τ) ∈ ∆

∆ ⊢ x : τ ⊲ x

FIX

∆, f : (χ1 → χ2), x : χ1 t : χ2 ⊲ u

∆ ⊢ (µf.λx.t) : (χ1 → χ2) ⊲ (µf.λx.u)

Figure 10. Type-checking and type-directed translation: values

VAL

∆ ⊢ v : τ ⊲ w

∆ v : τ ⊲ w

APP

∆ v : (χ1 → χ2) ⊲ u1 ∆, Γ t : χ1 ⊲ u2

∆, Γ (v t) : χ2 ⊲ (u1 u2)

SUB

Γ t : χ1 ⊲ u χ1 ≤ χ2 ⊲ w

Γ t : χ2 ⊲ (w u)

∗-INTRO (FRAME)

Γ t : χ ⊲ u

Γ, (x : C) t : (χ ∗ C) ⊲ (u, x)

∗-ELIM

Γ, (x1 : o), (x2 : C) t : χ ⊲ u

Γ, x1 : (o ∗ C) t : χ ⊲ let (x1, x2) = x1 in u

Figure 11. Type-checking and type-directed translation: terms

3 2008/4/2

∀-INTRO-VAL

∆, α ⊢ v : τ ⊲ w

∆ ⊢ v : (∀α.τ) ⊲ w

∀-ELIM-VAL

∆ ⊢ v : (∀α.τ) ⊲ w

∆ ⊢ v : ([α → o] τ) ⊲ w

∃-INTRO-VAL

∆ ⊢ v : ([α → o] τ) ⊲ w

∆ ⊢ v : (∃α.τ) ⊲ w

∃-ELIM-VAL

∆1, α, (x : τ1), ∆2 ⊢ v : τ ⊲ w

∆1, x : (∃α.τ1), ∆2 ⊢ v : τ ⊲ w

∀-INTRO-TRM

Γ, α ⊢ t : τ ⊲ u

Γ ⊢ t : (∀α.τ) ⊲ u

∀-ELIM-TRM

Γ t : (∀α.τ) ⊲ u

Γ t : ([α → o] τ) ⊲ u

∃-INTRO-TRM

Γ t : ([α → o] χ) ⊲ u

Γ t : (∃α.χ) ⊲ u

∃-ELIM-TRM

Γ1, α, (x : χ1), Γ2 t : χ ⊲ u

Γ1, x : (∃α.χ1), Γ2 t : χ ⊲ u

Figure 12. Additional rules: introduction and elimination for quantifiers

ref : τ → ∃σ.[σ] ∗ {σ : ref τ} ⊲ λx. ((), x)

get : [σ] ∗ {σ : ref τ} → τ ∗ {σ : ref τ} ⊲ λ((), x). (x, x)

set : ([σ] × τ2) ∗ {σ : ref τ1} → unit ∗ {σ : ref τ2} ⊲ λ((), x2, x1). ((), x2)

proj1 : [σ] ∗ {σ : τ1 × θ2} → τ1 ∗ {σ : τ1 × θ2} ⊲ λ((), (x1, x2)). (x1, (x1, x2))

case :
`

((∃σ1.([σ1] ∗ {σ : [σ1] + ⊥} ∗ {σ1 : θ1} ∗ C)) → χ) ⊲ λ(f1, f2, (), x, c). case (
× ((∃σ2.([σ2] ∗ {σ : ⊥ + [σ2]} ∗ {σ2 : θ2} ∗ C)) → χ) (λx1. (f1 ((), inj1(), x1, c))),
× [σ]

´

∗ {σ : θ1 + θ2} ∗ C → χ (λx2. (f2 ((), inj2(), x2, c))), x)

Figure 13. Typing and translation of primitives

General
SNG-CREATE : τ ≤ ∃σ.[σ] ∗ {σ : τ} ⊲ x ((), x)
SNG-EXTRACT : [σ] ∗ {σ : τ} ≤ τ ∗ {σ : τ} ⊲ ((), x) (x, x)
FREE : C ≤ ∅ ⊲ x ()

Focus-value
FOCUS-REF : {σ : ref θ1} ≡ ∃σ1.{σ : ref [σ1]} ∗ {σ1 : θ1} ⊲ x! ((), x)
FOCUS-PAIR

1 : {σ : θ1 × θ2}≡ ∃σ1.{σ : [σ1] × θ2} ∗ {σ1 : θ1} ⊲ (x1, x2)! (((), x2), x1)
FOCUS-SUM

1 : {σ : θ1 + ⊥} ≡ ∃σ1.{σ : [σ1] + ⊥} ∗ {σ1 : θ1} ⊲ (inj1 x)! (inj1 (), x)

Regions
NEW-GRP : ∅ ≤ ∃ρ1 · · · ρn.{ρ1 : θ1} ∗ . . . ∗ {ρn : θn} ⊲ () (map empty, . . . , map empty)
ADOPT-GRP : [σ] ∗ {σ : θ} ∗ {ρ : θ} ≤ [ρ] ∗ {ρ : θ} ⊲ ((), x, m) let k = map fresh m in

(k, map add (m, k, x))
FOCUS-GRP : [ρ] ∗ {ρ : θ} ≤ ∃σ.[σ] ∗ {σ : θ} ∗ {ρ : θ \ σ} ⊲ (k, m) ((), map get (m, k), (m, k)))
UNFOCUS-GRP : {σ : θ} ∗ {ρ : θ \ σ} ≤ {ρ : θ} ⊲ (x, (m, k)) map set (m, k, x)

Embedding
∃.EMBED : {σ : (∃α.θ)} ≡ ∃α.{σ : θ} ⊲ x! x
∗.EMBED : {σ : (θ ∗ C)} ≡ {σ : θ} ∗ C ⊲ x! x

Administrative
∗.COMM-CAP : C1 ∗ C2 ≡ C2 ∗ C1 ⊲ (x1, x2)! (x2, x1)
∗.ASSOC : (o ∗ C1) ∗ C2 ≡ o ∗ (C1 ∗ C2) ⊲ ((x1, x2), x3)! (x1, (x2, x3))
∗.NEUTRAL : o ∗ ∅ ≡ o ⊲ (x, ())! x
∃.COMM : ∃α1.∃α2.o ≡ ∃α2.∃α1.o ⊲ x! x
∃.EXTRUDE-L : o1 ∗ (∃α.o2) ≡ ∃α.(o1 ∗ o2) ⊲ x! x
∃.EXTRUDE-R : (∃α.o1) ∗ o2 ≡ ∃α.(o1 ∗ o2) ⊲ x! x

Figure 14. Subtyping rules and their translations

4 2008/4/2

SUB-REFL

Σ ⊢ o ≤ o ⊲ id

SUB-TOP

o : κ ∈ {VAL, MEM}

Σ ⊢ o ≤ ⊤ ⊲ id

SUB-BOT

o : κ ∈ {VAL, MEM}

Σ ⊢ ⊥ ≤ o ⊲ id

SUB-ARROW

Σ ⊢ o′1 ≤ o1 ⊲ w1 Σ ⊢ o2 ≤ o′2 ⊲ w2

Σ ⊢ (o1 → o2) ≤ (o′1 → o′2) ⊲ λf. w2 ◦ f ◦ w1

SUB-PROD

Σ ⊢ o1 ≤ o′1 ⊲ w1 Σ ⊢ o2 ≤ o′2 ⊲ w2

Σ ⊢ (o1 × o2) ≤ (o′1 × o′2) ⊲ w1 × w2

SUB-SUM

Σ ⊢ o1 ≤ o′1 ⊲ w1 Σ ⊢ o2 ≤ o′2 ⊲ w2

Σ ⊢ (o1 + o2) ≤ (o′1 + o′2) ⊲ w1 + w2

SUB-∗

Σ ⊢ o1 ≤ o′1 ⊲ w1 Σ ⊢ o2 ≤ o′2 ⊲ w2

Σ ⊢ (o1 ∗ o2) ≤ (o′1 ∗ o′2) ⊲ w1 × w2

SUB-∃

Σ ⊢ o ≤ o′ ⊲ w

Σ ⊢ (∃α.o) ≤ (∃α.o′) ⊲ w

SUB-∀

Σ ⊢ o ≤ o′ ⊲ w

Σ ⊢ (∀α.o) ≤ (∀α.o′) ⊲ w

SUB-REF

Σ ⊢ o ≤ o′ ⊲ w

Σ ⊢ (ref o) ≤ (ref o′) ⊲ w

SUB-SNG

Σ ⊢ o ≤ o′ ⊲ w

Σ ⊢ {σ : o} ≤ {σ : o′} ⊲ w

SUB-GRP

Σ ⊢ o ≤ o′ ⊲ w

Σ ⊢ {ρ : o} ≤ {ρ : o′} ⊲ λm. map map w m

SUB-HYP

(o1 ≤ o2 ⊲ x) ∈ Σ

Σ ⊢ o1 ≤ o2 ⊲ x

SUB-REC-LEFT

o1 = µα.o

Σ, (o1 ≤ o2 ⊲ x) ⊢ ([α → o1] o) ≤ o2 ⊲ w

Σ ⊢ o1 ≤ o2 ⊲ µx.w

SUB-REC-RIGHT

o2 = µα.o

Σ, (o1 ≤ o2 ⊲ x) ⊢ o1 ≤ ([α → o2] o) ⊲ w

Σ ⊢ o1 ≤ o2 ⊲ µx.w

Figure 15. Subtyping under context

TOP

∆ ⊢ v : ⊤ ⊲ w

REC

∆ ⊢ v : ([α → µα.τ] τ) ⊲ w

∆ ⊢ v : (µα.τ) ⊲ w

SNG

µ; ∆ ⊢ µ[σ] : [σ] ⊲ ()

GRP

µ; ∆ ⊢ µ[ρ][k] : [ρ] ⊲ k

Figure 16. Additional rules for typing at runtime

CAP-EMPTY

s; µ ⊢ ∅ ∠ ∅ ⊲ ()

CAP-∃-INTRO

s; µ ⊢ ([α → o] C) ∠ P ⊲ w

s; µ ⊢ (∃α.C) ∠ P ⊲ w

CAP-∗-INTRO

s; µ ⊢ C1 ∠ P1 ⊲ w1 s; µ ⊢ C2 ∠ P2 ⊲ w2

s; µ ⊢ (C1 ∗ C2) ∠ (P1 ⊎ P2) ⊲ (w1, w2)

CAP-REC

s; µ ⊢ ([α → µα.C] C) ∠ P ⊲ w

s; µ ⊢ (µα.C) ∠ P ⊲ w

CAP-SNG

s; µ ⊢ µ[σ] : θ ∠ P ⊲ w

s; µ ⊢ {σ : θ} ∠ (P ⊎ {σ}) ⊲ w

CAP-GRP

dom(µ[ρ]) = dom(m)

∀k ∈ dom(µ[ρ]), s; µ ⊢ µ[ρ][k] : θ ∠ Pk ⊲ m[k]

s; µ ⊢ {ρ : θ} ∠ ((⊎kPk) ⊎ {ρ}) ⊲ m

CAP-GRP-FOCUSED

dom(µ[ρ]) = dom(m) µ[ρ][k0] = µ[σ]
`

∀k ∈ dom(m) \ {k0}, s; µ ⊢ µ[ρ][k] : θ ∠ Pk ⊲ m[k]
´

s; µ ⊢ {ρ : θ \ σ} ∠ ((⊎kPk) ⊎ {ρ}) ⊲ m

Figure 17. Typing, ownership and translation of capabilities

5 2008/4/2

MEM-VAL

µ; ∅ ⊢ v : τ ⊲ w

s; µ ⊢ v : τ ∠ ∅ ⊲ w

MEM-LOC

s; µ ⊢ s[l] : θ ∠ P ⊲ w

s; µ ⊢ l : (ref θ) ∠ (P ⊎ {l}) ⊲ w

MEM-REC

s; µ ⊢ v : ([α → µα.θ] θ) ∠ P ⊲ w

s; µ ⊢ v : (µα.θ) ∠ P ⊲ w

MEM-INJ

s; µ ⊢ v : θi ∠ P ⊲ w

s; µ ⊢ (inj
i v) : (θ1 + θ2) ∠ P ⊲ (inj

i w)

MEM-PAIR

s; µ ⊢ v1 : θ1 ∠ P1 ⊲ w1 s; µ ⊢ v2 : θ2 ∠ P2 ⊲ w2

s; µ ⊢ (v1, v2) : (θ1 × θ2) ∠ (P1 ⊎ P2) ⊲ (w1, w2)

MEM-∃-INTRO

s; µ ⊢ v : ([α → o] θ) ∠ P ⊲ w

s; µ ⊢ v : (∃α.θ) ∠ P ⊲ w

MEM-∗-INTRO

s; µ ⊢ v : θ ∠ P1 ⊲ w1 s; µ ⊢ C ∠ P2 ⊲ w2

s; µ ⊢ v : (θ ∗ C) ∠ (P1 ⊎ P2) ⊲ (w1, w2)

Figure 18. Typing, ownership and translation of memory values

EXE-VAL

µ; ᾱ ⊢ v : τ ⊲ w

s; µ; ᾱ; ∅ ||= v : τ ⊲ w

EXE-APP

µ; ᾱ ⊢ v : (χ1 → χ2) ⊲ w s; µ; ᾱ; P ||= t : χ1 ⊲ u

s; µ; ᾱ; P ||= (v t) : χ2 ⊲ (w u)

EXE-∗-INTRO (EXE-FRAME)

s; µ; ᾱ; P1 ||= t : χ ⊲ u s; µ ⊢ C ∠ P2 ⊲ w

s; µ; ᾱ; (P1 ⊎ P2) ||= t : (χ ∗ C) ⊲ (u, w)
(ᾱ#C)

EXE-SUB

s; µ; ᾱ; P ||= t : χ1 ⊲ u χ1 ≤ χ2 ⊲ w

s; µ; ᾱ; P ||= t : χ2 ⊲ (w u)

EXE-∃-INTRO

s; µ; ᾱ; P ||= t : ([α → o] χ) ⊲ u

s; µ; ᾱ; P ||= t : (∃α.χ) ⊲ u

EXE-∀-INTRO

s; µ; (ᾱ, α); P ||= t : τ ⊲ u

s; µ; ᾱ; P ||= t : (∀α.τ) ⊲ u

EXE-∀-ELIM

s; µ; ᾱ; P ||= t : (∀α.τ) ⊲ u

s; µ; ᾱ; P ||= t : ([α → o] τ) ⊲ u

Figure 19. Typing executed terms

OUT-VAL

µ; ᾱ ⊢ v : τ ⊲ w

s; µ; ᾱ; ∅ |= v : τ ⊲ w

OUT-∃-INTRO

s; µ; ᾱ; P |= v : ([α → o] χ) ⊲ u

s; µ; ᾱ; P |= v : (∃α.χ) ⊲ u

OUT-∗-INTRO (OUT-FRAME)

s; µ; ᾱ; P1 |= v : χ ⊲ u

s; µ ⊢ C ∠ P2 ⊲ w

s; µ; ᾱ; (P1 ⊎ P2) |= v : (χ ∗ C) ⊲ (u, w)

Figure 20. Typing output values

6 2008/4/2

FUN

∆, x : χ1 t : χ2 ⊲ u

∆ ⊢ (λx. t) : (χ1 → χ2) ⊲ (λx. u)

LET

∆, Γ1 ⊢ t1 : χ1 ⊲ u1 ∆, (x : χ1), Γ2 ⊢ t2 : χ2 ⊲ u2

∆, Γ1, Γ2 ⊢ (let x = t1 in t2) : χ2 ⊲ (let x = u1 in u2)

SUB-CTX

Γ1, (x : o2), Γ2 t : χ ⊲ u o1 ≤ o2 ⊲ w

Γ, (x : o1), Γ2 t : χ ⊲ (let x = w x in u)

SUB-REC (AMADIO AND CARDELLI)

Σ, (α1 ≤ α2) ⊢ o1 ≤ o2

Σ ⊢ µα1.o1 ≤ µα2.o2

FOLD-UNFOLD

µα.o ≡ ([α → µα.o] o) ⊲ λx. x

Quantifiers
∀.ELIM : ∀α.o1 ≤ [α → o2] o1 ⊲ x x
∃.INTRO : [α → o2] o1 ≤ ∃α.o1 ⊲ x x
∃.NO-OCCUR : ∃α.o ≤ o (when α # o) ⊲ x x

Arrows
→.FRAME : (χ1 → χ2) ≤ (χ1 ∗ C) → (χ2 ∗ C) ⊲ f λ(x1, x2). (f x1, x2)
→.DISTRIB-RIGHT : ∀α.(χ1 → χ2) ≡ χ1 → (∀α.χ2) (when α # χ1) ⊲ x! x
→.DISTRIB-LEFT : ∀α.(χ1 → χ2) ≡ (∃α.χ1) → χ2 (when α # χ2) ⊲ x! x

Figure 21. Extra rules

7 2008/4/2

8. Definitions for proofs

The following notation was introduced in the paper:

(s, µ)\P ⊑ (s′, µ′)\P ′ :=

8

<

:

µ ⊑ µ′

s\P ⊆ s′\P ′

µ\P ⊆ µ′
\P ′

Moreover, we define another notation to capture the idea that
the store and structure of regions can only evolve on the portion P
which is owned, as follows:

(s, µ) ⊑|P (s′, µ′) :=

8

<

:

µ ⊑ µ′

µ|P ⊆ µ′
|P

s|P ⊆ s′|P

where s|P describes the subset of bindings from s which bind a
location contained in P , and similarly µ|P describes the subset of
bindings from µ which bind a region contained in P .

Properties Figure 26 gives the properties of the two above judg-
ments that are used throughout the proof.

9. Main result of the proof

Each step of reduction in the source language is simulated by one
or more steps of reduction in the target language. Moreover, if
the source program converges to a value, then its translation also
reaches a value after a finite number of steps. This is summarized
in the following diagram.

t / s −→ t′ / s′ −→ . . . −→ v′′ / s′′ 67−→

...
...

......
...

...

u −→+ u′ −→+ . . . −→+ u′′ −→∗ w 67−→

The corresponding formal statement is given below.

Theorem (EQUIVALENCE) If the following property holds

ᾱ t : χ ⊲ u

then

(1) (t / ∅) −→∞ ⇐⇒ u −→∞

(2) (t / ∅) −→∗ (v / s) ⇐⇒ u −→∗ w

Moreover, if the terms converge, there exists µ and P such that

s; µ; ᾱ; P |= v : χ ⊲ w

Proof. Lemma SIMULATION proves that a step of reduction in the
source language is simulated by one or more steps of reduction in
the target language. Lemma TERMINATION proves that the trans-
lated program converges when its source has converged. �

10. Proofs

Proofs follows, on single-columned pages.

node ρ := ref (unit + [ρ])

⊲ unit + key

{ρ : node ρ}

forest := map (unit + key)

new : ∀ρ.unit →{ρ:node ρ} [ρ]

⊲ ∀α.unit × forest → key × forest

:= λ().ref (inj1 ())

⊲ λ((), r).
let k = map fresh r in

let r′ = map add (r, k, (inj1 ())) in
(k, r′)

find : ∀ρ.[ρ] →{ρ:node ρ} [ρ]

⊲ ∀α.key × forest → key × forest

:= µf.λn.match (get n) with

| inj1 () ⇒ n
| inj2 m ⇒

let p = f m in

set (n, inj2 p) ;
p

⊲ µf.λ(n, r).match (map get (r, n)) with

| inj1 () ⇒ (n, r)
| inj2 m ⇒

let (p, r′) = f (m, r) in

let r′′ = map set (r′, n, (inj2 p)) in
(p, r′′)

union : ∀ρ.[ρ] × [ρ] →{ρ:node ρ} unit

⊲ ∀α.key × key × forest → unit × forest

:= λ(n1, n2).
let p1 = find n1 in
let p2 = find n2 in

set (p1, inj2 p2)

⊲ λ(n1, n2, r).
let (p1, r

′) = find (n1, r) in
let (p2, r

′′) = find (n2, r
′) in

let r′′′ = map set (r′′, p1, (inj2 p2)) in
((), r′′′)

Figure 23. Example: union-find

8 2008/4/2

reflexivity: (s, µ)\P ⊑ (s, µ)\P

transitivity:

(s, µ)\P ⊑ (s′, µ′)\P ′

(s′, µ′)\P ′ ⊑ (s′′, µ′′)\P ′′

⇒ (s, µ)\P ⊑ (s′′, µ′′)\P ′′

composition:
˘

(s, µ)\P ⊑ (s′, µ′)\P ′ ⇒ (s, µ)\(P⊎P1) ⊑ (s′, µ′)\(P ′⊎P1)

complementary:

(s, µ)\P ⊑ (s′, µ′)\P ′

P1 ⊎ P
⇒ (s, µ) ⊑|P1

(s′, µ′)

restriction:

(s, µ) ⊑|P (s′, µ′)
P1 ⊆ P

⇒ (s, µ) ⊑|P1
(s′, µ′)

Figure 26. Properties about invariants

type of f := µα.(unit →{σ:ref α} unit)

⊲ µα.(unit × α → unit × α)

loop := let r = ref() in
let f = λ().

let g = get r in
g () in

set (r, f) ;
f ()

⊲ let r1 = () in
let f = λ((), r).

let (g, r′) = (r, r) in
g ((), r′) in

let r2 = f in
f ((), r2)

⊲ let f = λ((), r).r ((), r) in
f ((), f)

⊲ let f = λr.r r in
f f

Figure 24. Example: Infinite loop without recursion

type of F := ∀ǫ.(α →ǫ β) → (α →ǫ β)
⊲ ∀γ.(JαK × γ → JβK × γ) → (JαK × γ → JβK × γ)

fixpoint := λF.let r = ref() in
let g = λx.

let f = get r in
f x in

let f = λx.F g x in
set (r, f) ;
f

⊲ λF.let r1 = () in
let g = λ(x, r).

let (f, r′) = (r, r) in
f (x, r′) in

let f = λ(x, r).F g (x, r) in
let r2 = f in
(f, r2)

⊲ λF.let g = λ(x, r).r (x, r) in
let f = F g in
(f, f)

apply rec := λF.λx.
let f = fixpointF in
f x

⊲ λF.λx.
let (f, e) = fixpointF in
f (x, e)

⊲ λF.λx.
let g = λ(y, f).f (y, f) in
F g (x, (F g))

Figure 25. Example: Fixpoint without recursion (Landin’s knot)

9 2008/4/2

1 Substitution

Typing and translation are preserved when extending
the context with a set of non-linear bindings ∆2.

Lemma weaken-val

µ; (∆1, ∆3) ⊢ v : τ ⊲ w ⇒ µ; (∆1, ∆2, ∆3) ⊢ v : τ ⊲ w

Lemma weaken-trm

µ; (∆1, Γ3) t : χ ⊲ u ⇒ µ; (∆1, ∆2, Γ3) t : χ ⊲ u

Proof. Trivial by mutual induction. �

Typing is preserved through substitution of a value x of
non-linear value type τ1 by a value v1 of corresponding
type. Futhermore, substitution in the source language
is reflected by a substitution in the translated program.

Lemma subst-val

{

µ; ∆1 ⊢ v1 : τ1 ⊲ w1

µ; (∆1, x : τ1, ∆2) ⊢ v2 : τ2 ⊲ w2

⇒
{

µ; (∆1, ∆2) ⊢ ([x → v1] v2) : τ2 ⊲ ([x → w1] w2)

Lemma subst-trm

{

µ; ∆1 ⊢ v1 : τ1 ⊲ w1

µ; (∆1, x : τ1, Γ2) t : χ ⊲ u
⇒

{

µ; (∆1, Γ2) ([x → v1] t) : χ ⊲ ([x → w1] u)

Proof. By mutual induction. Non-trivial cases:

− Case var: use weaken-val if the variable involved happens to be
the variable substitued.

1

− Case sub: the coercion is a closed term and thus is not affected by
substitution.

− Case ∗-intro: the variable which is being substituted must be distinct
from which is framed, since they are bound to objects of different kinds.
Thus, it suffices to apply the IH.

− Case ∗-elim: the binding deconstructed is a conjunction, thereafter it
is not a value type and cannot be the binding being substituted. Thus,
it suffices to apply the IH. �

Beta-reduction of an abstraction (λx. t) of type (χ → χ′)
onto a value v of type χ is sound.

Lemma subst-out

{

µ; ᾱ, (x : χ) t : χ′ ⊲ u
s; µ; ᾱ; P |= v : χ ⊲ w

⇒
∃µ′ P ′ u′,

s; µ′; ᾱ; P ′ ||= ([x → v] t) : χ′ ⊲ u′

([x → w] u) −→∗ u′

(s, µ)\P ⊑ (s, µ′)\P ′

Proof. The statement is strengthened for the induction in the next lemma.�

Lemma subst-out-induction

µ; ᾱ, (x : χ), (xn : Cn), . . . , (x1 : C1) t : χ′ ⊲ u
s; µ; ᾱ; P |= v : χ ⊲ w
s; µ ⊢ Ci ∠ Pi ⊲ wi (i ∈ 1..n)
⊎iPi

⇒
∃µ′ P ′ u′,

s; µ′; ᾱ; P ′ ||= ([x → v] t) : χ′ ⊲ u′

[x1 → w1] . . . [xn → wn] [x → w] u −→∗ u′

(s, µ)\(⊎i∈1..nPi ⊎P) ⊑ (s, µ′)\P ′

2

Proof. By induction on the typing derivation of t.

◮ Case: val

0) For this rule to be applicable, n must be 0, χ must be a value type
(call it τχ), χ′ must also be a value type (call it τχ′), t must be a value (call
it vt) and its translation u as well (call it wu). The typing derivation is

µ; ᾱ, (x : τχ) ⊢ vt : τχ′ ⊲ wu

1) By inversion on the typing of v (rule out-val), P = ∅ and

µ; ᾱ ⊢ v : τχ ⊲ w

2) By lemma subst-val applied to the result of (0) and (1),

µ; ᾱ ⊢ ([x → v] vt) : τχ′ ⊲ ([x → w] wu)

3) By rule exe-val, it follows:

s; µ; ᾱ; ∅ ||= ([x → v] vt) : τχ′ ⊲ ([x → w] wu)

4) Conclude with µ′ = µ and P ′ = ∅ and u′ = ([x → w] wu).

◮ Case: app

0) The typing derivation ends with:

µ; ᾱ, ∆ v1 : (χ′
1 → χ′) ⊲ u1 µ; ᾱ, (x : χ) t2 : χ′

1 ⊲ u2

µ; ᾱ, (x : χ) (v1 t2) : χ′
⊲ (u1 u2)

app

where ∆ stands for the binding (x : τ) if χ is of the form τ , or is the empty
environment binding otherwise.

1) If ∆ is not empty, by lemma subst-val it follows:

µ; ᾱ ([x → v] v1) : (χ′
1 → χ′) ⊲ ([x → w] u1)

Otherwise ∆ is empty and this same result is immediate because x is fresh
from v1 and u1.

By termination applied to the first premise,
2) By induction on the above, there exists µ′′ and w′

1 such that

([x → w] u1) −→
∗ w′

1

µ′′; ᾱ ⊢ ([x → v] v1) : (χ′
1 → χ′) ⊲ w′

1

µ ⊑ µ′′

3

3) By induction hypothesis applied to the typing of t2, there exists µ′, P ′

and u′ such that

s; µ′; ᾱ; P ′ ||= ([x → v] t2) : χ′ ⊲ u′
2

[x1 → w1] . . . [xn → wn] [x → w] u2 −→
∗ u′

2

(s, µ′′)\(⊎i∈1..nPi ⊎P ′′) ⊑ (s, µ′)\P ′

4) Let u′ = (w1 u′
2). Rule exe-app is used to build the following conclu-

sion:
s; µ′; ᾱ; P ′ ||= ([x → v] (v1 t2)) : χ′

⊲ u′

Its first premise is the conclusion of:

stable-val

µ′′ ⊑ µ′ µ′′; ᾱ ⊢ ([x → v] v1) : (χ′
1 → χ′) ⊲ w′

1

µ′; ᾱ ⊢ ([x → v] v1) : (χ′
1 → χ′) ⊲ w′

1

and its second premise is the derivation for ([x → v] t2) obtained in (3).
5) The evolution of state is obtained by transitivity.
6) The reduction sequence in the target language is:

([x → w] (u1 u2)) = (([x → w] u1) ([x → w] u2)) −→
∗ (w′

1 u′
2) = u′

◮ Case: sub

Apply induction hypothesis, use the fact that a coercion is a closed value
thus is not affected by substitution, and conclude using exe-sub.

◮ Case: ∗-intro

0) Without loss of generality, assume C1 is being framed out. Then u
must be of the form (u1, x1) and χ′ must be of the form (χ′

1 ∗ C ′
1). The

typing derivation ends with

µ; ᾱ, (x : χ), (xn : Cn), . . . , (x2 : C2) t : χ′
1 ⊲ u1

µ; ᾱ, (x : χ), (xn : Cn), . . . , (x1 : C1) t : (χ′
1 ∗ C ′

1) ⊲ (u1, x1)
frame

1) By induction hypothesis, there exists µ′, P ′′ and u′
1 such that:

s; µ′; ᾱ; P ′′ ||= ([x → v] t) : χ′ ⊲ u′′

[x2 → w2] . . . [xn → wn] [x → w] u1 −→
∗ u′

1

(s, µ)\(⊎i∈2..nPi ⊎P) ⊑ (s, µ′)\P ′′

4

2) Now let P ′ = (P ′′ ⊎ P1) and u′ = (u′
1, w1).

3) The typing derivation of the conclusion is built using exe-frame:

s; µ′; ᾱ; P ′′ ||= t : χ′
1 ⊲ u′

1

µ ⊑ µ′

s; µ ⊢ C1 ∠ P1 ⊲ w1

s; µ′ ⊢ C1 ∠ P1 ⊲ w1

stable-cap

s; µ′; ᾱ; (P ′′ ⊎ P1) ||= t : (χ′
1 ∗ C ′

1) ⊲ (u′
1, w1)

exe-frame

4) The reduction sequence of the conclusion is obtained as follows:

[x1 → w1] . . . [xn → wn] [x → w] u
= [x1 → w1] . . . [xn → wn] [x → w] (u1, x1)
−→ (([x2 → w2] . . . [xn → wn] [x → w] u1), w1) since x1 # u1

−→∗ (u′
1, w1) by IH

= u′

5) For evolution of the state, it suffices to verify that:

(s, µ)\(⊎i∈2..nPi ⊎P) ⊑ (s, µ′)\P ′′

⇒ (s, µ)\(⊎i∈2..nPi ⊎P⊎P1) ⊑ (s, µ′)\(P ′′⊎P1)

The conclusion then follows from the equalities:

(⊎i∈1..nPi ⊎ P) = (⊎i∈2..nPi ⊎ P ⊎ P1) and P ′ = (P ′′ ⊎ P1)

◮ Case: ∗-elim

⋆ Sub-case: Elimination of a conjunction of a computation type and

a capability

0) In this case, χ must be of the form χ1 ∗ Cn+1 and u must be of the
form (let (x, xn+1) = x in u1). The typing derivation ends with:

µ; ᾱ, (x : χ1), (xn+1 : Cn+1), (xn : Cn), . . . , (x1 : C1) t : χ′
⊲ u1

1) By inversion on the typing of v, since only rule out-frame applies,
it follows the decompositions of P as P1 ⊎ Pn+1 and of w as (w1, wn+1) and

{

s; µ; ᾱ; P1 |= v : χ1 ⊲ w1

s; µ ⊢ Cn+1 ∠ Pn+1 ⊲ wn+1

5

2) By induction hypothesis, there exists µ′, P ′ and u′ such that

s; µ′; ᾱ; P ′ ||= ([x → v] t) : χ′ ⊲ u′

[x1 → w1] . . . [xn+1 → wn+1] [x → w] u1 −→
∗ u′

(s, µ)\(⊎i∈1..n+1Pi ⊎P1) ⊑ (s, µ′)\P ′

3) The derivation for u′ is:

[x1 → w1] . . . [xn → wn] [x → w] u
= [x1 → w1] . . . [xn → wn] [x → (w1, wn+1)] (let (x, xn+1) = x in u1)
−→ [x1 → w1] . . . [xn → wn] [xn+1 → wn+1] [x → w1] u1

−→∗ u′ by IH

4) And the evolution of the state is already proved, since:

(⊎i∈1..n+1Pi) ⊎ P1 = (⊎i∈1..nPi) ⊎ (Pn+1 ⊎ P1) = (⊎i∈1..nPi) ⊎ P

⋆ Sub-case: Elimination of a conjunction of a two capabilities

0) Without loss of generality, we can assume Cn is the conjunction elim-
inated. Thus Cn must be of the form Cn1 ∗ Cn2 and u must be of the form
(let (xn1, xn2) = xn in u1) and we have

µ; ᾱ, (x : χ1), (xn2 : Cn2)(xn1 : Cn1), (xn−1 : Cn−1), . . . , (x1 : C1) t : χ′
⊲ u1

1) By inversion on the typing of Cn (rule cap-∗-intro), Pn decomposes
as (Pn1 ⊎ Pn2) and wn decomposes as (wn1, wn2) and

{

s; µ ⊢ Cn1 ∠ Pn1 ⊲ wn1

s; µ ⊢ Cn2 ∠ Pn2 ⊲ wn2

2) The conclusion follow from the induction hypothesis with similar ar-
guments as in the previous subcase.

◮ Case: ∀-intro-trm

0) In this case, χ′ is of the form ∀α.τ ′ and the following proposition holds:

µ; ᾱ, (x : χ), (xn : Cn), . . . , (x1 : C1), α t : τ ′
⊲ u

1) By commutativity of bindings, the judgment can be rewritten into:

µ; (ᾱ, α), (x : χ), (x′
n : C ′

n), . . . , (x′
1 : C ′

1) t : τ ′
⊲ u

6

2) By the induction hypothesis, we obtain the reduction sequence on
u′ and the assumption on the evolution of the state, as well as a typing
derivation for ([x → v] t) which we can use to build the typing conclusion:

s; µ′; (ᾱ, α); P ′ ||= ([x → v] t) : τ ′
⊲ u

s; µ′; ᾱ; P ′ ||= ([x → v] t) : (∀α.τ ′) ⊲ u
exe-∀-intro

◮ Case: ∀-elim-trm

Apply the induction hypothesis, conclude using exe-∀-elim.

◮ Case: ∃-intro-trm

Apply the induction hypothesis, conclude using exe-∃-intro.

◮ Case: ∃-elim-trm

0) In this case χ must be of the form ∃α.χ1 and the following holds:

µ; (ᾱ, α), (x : χ1), (xn : Cn), . . . , (x1 : C1) t : χ′
⊲ u

1) By inversion on the typing of v, since only rule out-∃–intro applies,
there exists o such that:

s; µ; ᾱ; P |= v : ([α → o] χ1) ⊲ w

2) By type substitution from α to o in judgments (typ-subst), if follows:

µ; ᾱ, (x : [α → o] χ1), (xn : Cn), . . . , (x1 : C1) t : χ′
⊲ u

3) The rest follows from the induction hypothesis.

Substitution of a type variable by a type entity of the
corresponding kind preserves all judgments.

Lemma typ-subst For any judgment J of n entities e1 . . . en,

α : κ
e : κ
J(e1, . . . , en)

⇒ J([α → o] e1, . . . , [α → o] en)

Proof. By mutual induction on all judgments. �

7

2 Stability

Typing and translation of programs are preserved when
regions grow from µ to µ′ (written µ ⊑ µ′).

Lemma stable-val
{

µ; ∆ ⊢ v : τ ⊲ w
µ ⊑ µ′ ⇒ µ′; ∆ ⊢ v : τ ⊲ w

Lemma stable-trm
{

µ; Γ t : χ ⊲ u
µ ⊑ µ′ ⇒ µ′; Γ t : χ ⊲ u

Proof. By mutual induction. Non-trivial cases:

− Case sng: µ′[σ] = µ[σ] follows from µ ⊑ µ′.

− Case rgn: µ′[ρ][k] = µ[ρ][k] follows from µ ⊑ µ′. �

Typing and translation of a capability are preserved
when the piece of state controlled by this capability is
not modified, and under the condition that all regions
can only grow.

Lemma stable-cap
{

s; µ ⊢ C ∠ P ⊲ w
(s, µ) ⊑|P (s′, µ′)

⇒ s′; µ′ ⊢ C ∠ P ⊲ w

Lemma stable-mem
{

s; µ ⊢ v : θ ∠ P ⊲ w
(s, µ) ⊑|P (s′, µ′)

⇒ s′; µ′ ⊢ v : θ ∠ P ⊲ w

Proof. By mutual induction. Non-trivial cases:

− Case mem-loc: s′[l] = s[l] follows from s|P ⊆ s′|P and l ∈ P .

− Case cap-sng: µ′[σ] = µ[σ] follows from µ ⊑ µ′ and σ ∈ P .

− Case cap-grp: µ′[ρ] = µ[ρ] follows from µ|P ⊆ µ′
|P and ρ ∈ P .

− Case cap-grp-focused: use µ′[σ] = µ[σ] and µ′[ρ] = µ[ρ], as above.
�

8

3 Subtyping

There is a correspondance between the typing judgment
for values and the typing judgment for values covered
by capabilities when restricted to value types.

Lemma mem-to-val

s; µ ⊢ v : τ ∠ ∅ ⊲ w ⇒ µ; ∅ ⊢ v : τ ⊲ w

Proof. By induction.

− Case mem-val: the premise of the rule gives the conclusion.

− Case mem-loc and mem-∗-intro: impossible (τ is non-linear).

− Other cases: apply the induction hypotheses and conclude using the
corresponding typing rule for values (inj, pair, rec or ∃-intro-val).
�

Subtyping is admissible on closed values. Thus, sub-
typing operations can be eliminated from derivations.
Moreover, coercions that translate subtyping operations
transform target-language values accordingly.

Lemma reduce-sub-val

{

τ1 ≤ τ2 ⊲ w
µ; ᾱ ⊢ v : τ1 ⊲ w1

⇒ ∃w′
2,

{

(w w1) −→
+ w′

2

µ; ᾱ ⊢ v : τ2 ⊲ w′
2

Proof. This statement is strengthened for the induction, as stated in the
next lemma. �

Definition We write reduce-sub-val(τ1, τ2, w, v) if the previous lemma

holds for these parameters. ⋄

Definition The relation v′ � v holds whenever v′ is a value smaller from a

structural point of view than v. ⋄

9

Lemma reduce-sub-val-induction

Σ ⊢ τ1 ≤ τ2 ⊲ w
∀ v′ � v, ∀ (τ ′

1 ≤ τ ′
2 ⊲ w′) ∈ Σ, reduce-sub-val(τ ′

1, τ
′
2, w

′, v′)
µ; ᾱ ⊢ v : τ1 ⊲ w1

⇒ ∃w′
2,

{

(w w1) −→
+ w′

2

µ; ᾱ ⊢ v : τ2 ⊲ w′
2

Proof. By induction on the typing derivation of v. We consider the possible
combination of (1) a typing rule that assigns type τ1 to value v and (2) a
subtyping rule of the form τ1 ≤ τ2.

− Case Any rule, sub-refl: by assumption.

− Case Any rule, sub-top: apply rule top.

− Case Any rule, sub-bot: impossible, because there is no rule that
can be used to assign type ⊥ to a value.

− Case fix, sub-arrow: v is of the form (µf.λx.t), and χ is an arrow
of the form (χ1 → χ2). The typing derivation is:

∆, f : (χ1 → χ2), x : χ1 t : χ2 ⊲ u

∆ ⊢ (µf.λx.t) : (χ1 → χ2) ⊲ (µf.λx.u)
fix

We construct a typing derivation to give value v the type (χ′
1 → χ′

2) as
follows (the translation component is left implicit):

ᾱ, f : (χ1 → χ2), x : χ1 t : χ2

ᾱ, f : (χ1 → χ2), x : χ′
1 t : χ2

sub-left

ᾱ, f : (χ1 → χ2), x : χ′
1 t : χ2

sub

ᾱ, f : (χ′
1 → χ′

2), x : χ′
1 t : χ′

2

sub-left

ᾱ ⊢ (µf.λx.t) : (χ′
1 → χ′

2)
fix

− Case pair,sub-prod: Apply the induction hypothesis for each com-
ponent, and conclude using rule pair.

10

− Case sum, sub-sum: Apply the induction hypothesis, and conclude
using rule sum.

− Case ∃-intro-val, sub-∃: Apply the induction hypothesis and con-
clude using ∃-intro-val.

− Case ∀-intro-val, sub-∀: Apply the induction hypothesis and con-
clude using ∀-intro-val.

− Case Any rule, sub-hyp: (τ1 ≤ τ2 ⊲ w) ∈ Σ, so by hypothesis
sub-reduce-val holds and this suffices to conclude.

− Case rec, sub-rec-left: The conclusion comes directly from the
induction hypothesis. Applying the induction hypothesis is correct be-
cause the reasoning goes by induction on v and the conclusion will only
be reused on strict subterms of v. (This is true because the recursive
type is constructive.)

− Case Any rule, sub-rec-right: Apply the induction hypothesis,
valid for the same reason as above. Then conclude using rule rec.
�

Lemma reduce-sub-mem

{

θ1 ≤ θ2 ⊲ w
s; µ ⊢ v : θ1 ∠ P ⊲ w1

⇒ ∃µ′ P ′ w′
2,

(w w1) −→
+ w′

2

s; µ ⊢ v : θ2 ∠ P ′ ⊲ w′
2

(s, µ)\P ⊑ (s, µ′)\P ′

Lemma reduce-sub-cap

{

C1 ≤ C2 ⊲ w
s; µ ⊢ C1 ∠ P ⊲ w1

⇒ ∃µ′ P ′ w′
2,

(w w1) −→
+ w′

2

s; µ′ ⊢ C2 ∠ P ′ ⊲ w′
2

(s, µ)\P ⊑ (s′, µ′)\P ′

Proof. By mutual induction. Formally, the proposition should be first
strengthened as for the proof of reduce-sub-val in order to deal with
recursive types. Yet since dealing with the subtyping context brings no fur-
ther difficulty, the details are omitted here to avoid being distracted from the
main matter.

11

− Case Any rule, sub-refl: by assumption.

− Case Any rule, sub-top: apply rule top.

− Case mem-val, Any rule: take µ′ = µ and P ′ = P then apply lemma
reduce-sub-val and conclude with rule mem-val.

− Case mem-loc, sub-ref: Apply the induction hypothesis, and con-
clude using rule mem-loc.

− Case mem-inj, sub-sum: Apply the induction hypothesis, and con-
clude using rule mem-inj.

− Case mem-pair, sub-prod: Apply the induction hypothesis, and
conclude using rule mem-pair.

− Case mem-∃-intro, sub-∃: Apply the induction hypothesis and con-
clude using mem-∃-intro.

− Case mem-∗-intro, sub-∗: Apply the induction hypothesis on the
first branch, then on the second branch, and conclude by transitivity of
evolution and using rule mem-∗-intro.

− Case cap-∃-intro, sub-∃: Apply the induction hypothesis and con-
clude using cap-∃-intro.

− Case cap-∗-intro, sub-∗: Apply the induction hypothesis on the
first branch, then on the second branch, and conclude by transitivity of
evolution and using rule cap-∗-intro.

− Case cap-sng, sub-sng: Apply the induction hypothesis and con-
clude using cap-sng.

− Case cap-grp, sub-grp: Apply the induction hypothesis and con-
clude using cap-grp.

Moreover, we prove the subtyping axioms admissible.

− Case free: take µ′ = µ and P ′ = ∅ and conclude using cap-empty.

− Case focus-ref: by inversion (rules cap-sng and mem-ref), P
corresponds to the ownership of singleton region σ, of the location l
and of the value v = s[l] at type θ. We let µ′ = µ⊎ [σ1 7→ v] for a fresh
region σ1 and P ′ = P . The conclusion is built using rules cap-∃-intro,
cap-∗-intro, cap-sng and mem-ref.

12

− Case focus-pair: similar.

− Case focus-sum: similar.

− Case new-grp: µ′ extends µ by binding fresh names ρi to empty
maps. P ′ extends P with that set of region names.

In the remaining rules, capabilities are only rearranged, so we can take
µ′ = µ and P ′ = P .

− Case unfocus-rgn: Use facts obtained by inversion (rules cap-sng

and cap-grp-focused) to build the conclusion using cap-grp.

− Case ∃-embed: by inversion (rules cap-sng then mem-∃-intro) and
conclude with cap-sng then cap-∃-intro.

− Case ⋆-embed: by inversion (rules cap-sng then mem-∗-intro) and
conclude with cap-sng then cap-∗-intro.

− Administrative rules: trivial. �

Lemma reduce-sub-out

{

χ1 ≤ χ2 ⊲ w
s; µ; ᾱ; P |= v : χ1 ⊲ w1

⇒
∃µ′ P ′ w′

2,

(w w1) −→
+ w′

2

s; µ′; ᾱ; P ′ |= v : χ2 ⊲ w′
2

(s, µ)\P ⊑ (s, µ′)\P ′

Proof. By induction on the subtyping derivation.

− If χ1 and χ2 are value types, use lemma reduce-sub-val (and by
inversion obtain a typing judgment for the value v viewed as a value).

− Case sub-∃-intro: by inversion the typing of v must end with rule
out-∃-intro. Then apply the induction hypothesis, and conclude with
out-∃-intro.

13

− Case sub-∗-intro: by inversion the typing of v must end with rule
out-∗-intro. For the left branch use the induction hypothesis, then
for the right branch use reduce-sub-cap. Conclude by transitivity,
and using rule out-∗-intro.

− Case sub-refl: by assumption.

− Case sng-create: by assumption, v has type τ . Let µ′ = µ⊎ [σ 7→ v]
for a fresh singleton region σ. Let P ′ = (P ⊎ σ). Conclude using rules
sng, out-∗-intro and out-∃-intro.

− Case sng-extract: by inversion, v has type [σ], and region σ con-
tains a single value of type τ . Thus v admits type τ , by lemma mem-

to-val. Conclude taking µ′ = µ and P ′ = P .

− Case adopt-grp: by inversion, v has type σ, and region σ contains
a single value of type θ. Let m = µ[ρ], let k be the smallest unused key
in m, let m′ = m ⊎ [k 7→ v] and then µ′ = µ[ρ 7→ θ′]. Take P ′ = P and
type-check the conclusion using rule cap-grp.

− Case focus-grp: by inversion, v has type ρ and so by rule grp there
exists k such that v = µ[ρ][k]. Let µ′ = µ⊎ [σ 7→ v] for a fresh singleton
region σ. Let P ′ = P . Result is type-checked using rules sng and
focused.

− Administrative rules: trivial. �

4 Reduction

A well-typed application of a value v1 to another value v2

reduces to a term t′. Furthermore, typing is preserved,
and the reduction step is simulated by a reduction step
in the translated program.

14

Lemma reduction

(v1 v2) / s −→ t′ / s′

µ; (ᾱ1, ᾱ2) ⊢ v1 : (∀ᾱ3.χ1 → χ2) ⊲ w1

s; µ; ᾱ1; P |= v2 : [ᾱ2 → ō2][ᾱ3 → ō3] χ1 ⊲ w2

⇒
∃µ′ P ′ u′,

(w1 w2) −→ u′

s′; µ′; ᾱ1; P ′ ||= t′ : [ᾱ2 → ō2][ᾱ3 → ō3] χ2 ⊲ u′

(s, µ)\P ⊑ (s′, µ′)\P ′

Proof. By induction on the typing derivation of v1.

◮ Case: beta

0) In this case, ᾱ3 is empty, v1 is of the form (µf.λx.t1) and t′ of the form
[f → v1][x → v2] t1 and w1 is of the form (µf.λx.u1) and s′ = s. The body
of the function is typed as follows:

µ; (ᾱ1, ᾱ2), f : (χ1 → χ2), x : χ1 t1 : χ2 ⊲ u1

1) By type substitution (typ-subst) in the above judgment:

µ; ᾱ1, f : [ᾱ2 → ō2] (χ1 → χ2), x : [ᾱ2 → ō2] χ1 t1 : [ᾱ2 → ō2] χ2 ⊲ u1

2) By typ-subst applied to the typing assumption on v1:

µ; ᾱ1 ⊢ v1 : ([ᾱ2 → ō2] χ1 → [ᾱ2 → ō2] χ2) ⊲ w1

3) By subst-trm applied to (1) and (2):

µ; ᾱ1, x : [ᾱ2 → ō2] χ1 [f → v1] t1 : [ᾱ2 → ō2] χ2 ⊲ [f → w1] u1

4) Now by the typing assumption on v2:

s; µ; ᾱ1; P |= v2 : [ᾱ2 → ō2] χ1 ⊲ w2

5) By subst-out on (3) and (4), there exists µ′, P ′ and u′ such that:

s; µ′; ᾱ; P ′ ||= [x → v2][f → v1] t : [ᾱ2 → ō2] χ2 ⊲ u′

[x → w2][f → w1] u1 −→
∗ u′

(s, µ)\P ⊑ (s, µ′)\P ′

15

6) This suffices to conclude, since

(w1 w2) = ((µf.λx.u1) w2) −→ [f → w1][x → w2] u1 −→
∗ u′

◮ Case: ref

0) In this case, the function v1 is ref, and w1 = (λx. ((), x)). The argument
v2 has a type of the form τ and is translated as w2. Moreover, there exists a
fresh location l such that s′ = s ⊎ [l 7→ v2] and t′ = l.

1) By inversion on the typing of v2 (rule out-val), P = ∅ and:

µ; ∅ ⊢ v2 : τ ⊲ w

2) Let σ be a fresh singleton region and let µ′ = µ ⊎ [σ 7→ l]. Let
P ′ = ({l} ⊎ {σ}). And let u′ = ((), w2).

3) The reduction (w1 w2) −→ u′ is satified. The relation (s, µ)\P ⊑
(s′, µ′)\P ′ holds. The typing derivation for the output term is:

rgn

s′; µ′; ; ∅ ||= (µ′[σ] = l) : [σ] ⊲ ()

µ ⊑ µ′ µ; ∅ ⊢ v2 : τ ⊲ w

µ′; ∅ ⊢ v2 : τ ⊲ w
stable-val

s′; µ′ ⊢ (s[l] = v2) : τ ∠ ∅ ⊲ w2

mem-val

s′; µ′ ⊢ (µ′[σ] = l) : ref τ ∠ {l} ⊲ w2

mem-loc

s′; µ′ ⊢ {σ : ref τ} ∠ ({l} ⊎ {σ}) ⊲ w2

cap-sng

s′; µ′; ; ({l} ⊎ {σ}) ||= l : ([σ] ∗ {σ : ref τ}) ⊲ ((), w2)
exe-frame

s′; µ′; ; ({l} ⊎ {σ}) ||= l : ∃σ.([σ] ∗ {σ : ref τ}) ⊲ ((), w2)
exe-∃-intro

◮ Case: get

1) By inversion on the typing of v2 (only rules out-frame then out-val

can apply), and then by inversion on the typing of the capability {σ : ref τ}
(only rules cap-sng then mem-loc can apply), and then applying the mem-

to-val lemma, we obtain a typing judgment for the value contained in the
store at the location being read. The value w2 must be a pair of the form
((), w22).

2) Let µ′ = µ, P ′ = P = ({l} ⊎ {σ}), and let u′ = (w22, w22).
3) The rest follows using similar techniques as for ref.

◮ Case: set

1) As for get, we obtain a typing judgment for the value contained in
the store at the location being read. The value w2 must be a triple of the
form ((), w22, w23)

16

2) Let µ′ = µ, P ′ = P = ({l} ⊎ {σ}), and let u′ = ((), w23).
3) The rest follows using similar techniques as for ref.

◮ Case: proj
1

1) By inversion on the typing of v2 (one rule out-conj applies), the value
v2 has type σ and its translation w2 is of the form ((), w2c. Moreover, the
capability {σ : τ1 × θ2} is translated as w22.

2) By inversion of v2 having type σ (by rules out-val then sng), we
have µ[σ] = v2.

3) By inversion of the typing of this capability, µ[σ], which is equal to v2

has memory type τ1 × θ2. Thus, v2 must be a pair of the form (v21, w22) and
its translation w2c must be a pair of the form (w21, w22).

4) The reduction rule for proj1 applies, and returns v21. The translation
returns w21 which is indeed the translation of v21 at type τ1.

5) The function returns as well the input capability, which is translated
in the target language as a copy of the translation of the input capability.

6) To conclude, we take µ′ = µ, P ′ = P , and let u′ = (w21, (w21, w22)).

◮ Case: case

Similar arguments as for proj
i.

5 Simulation

A step of reduction in a well-typed source is reflected by
one or more steps of reduction in its translation. During
this process, regions can only grow and the term cannot
affect or acquire a piece of state that it does not own.
(Variable P describes the piece of state owned.)

Lemma simulation

{

t / s −→ t′ / s′

s; µ; ᾱ; P ||= t : χ ⊲ u
⇒ ∃µ′ P ′ u′,

u −→+ u′

s′; µ′; ᾱ; P ′ ||= t′ : χ ⊲ u′

(s, µ)\P ⊑ (s′, µ′)\P ′

17

Proof. By induction on the typing derivation of t.

◮ Case: exe-val

This case is impossible because a value is not reducible.

◮ Case: exe-app

The term t is of the form (v1 t2) and u is of the form (w1 w2). The typing
derivation ends with an instance of the exe-app rule.

µ; ᾱ ⊢ v1 : (χ1 → χ) ⊲ w1 s; µ; ᾱ; P ||= t2 : χ ⊲ u2

s; µ; ᾱ; P ||= (v1 t2) : χ ⊲ (w1 u2)
exe-app

There are two cases to consider, depending on whether t2 is already a
value or not.

⋆ Sub-case: The argument is not a value

0) The only reduction rules that applies is the ctx rule:

t2 / s −→ t′2 / s′

(v1 t2) / s −→ (v1 t′2) / s′
ctx

1) By induction hypothesis, there exists µ′, P ′ and u′
2 such that

u −→+ u′

s′; µ′; ᾱ; P ′ ||= t′2 : χ1 ⊲ u′
2

(s, µ)\P ⊑ (s′, µ′)\P ′

2) The conclusion comes from the following derivation:

stable-val

µ ⊑ µ′

µ; ᾱ ⊢ v1 : (χ1 → χ) ⊲ w1

µ′; ᾱ ⊢ v1 : (χ1 → χ) ⊲ w1 s′; µ′; ᾱ; P ′ ||= t′2 : χ1 ⊲ u′
2

s′; µ′; ᾱ; P ′ ||= (v1 t′1) : χ ⊲ (w1 u′
2)

exe-app

and the corresponding reduction steps in the target language:

(w1 u2) −→
+ (w1 u′

2)

18

⋆ Sub-case: The argument is a value

0) Let v2 stand for the value t2. The premises of exe-app are:

{

µ; ᾱ ⊢ v1 : (χ1 → χ) ⊲ w1

s; µ; ᾱ; P ||= v2 : χ1 ⊲ u2

1) Lemma termination applied to the second proposition gives µ′′, P ′′

and w2 such that:

u2 −→
∗ w2

s; µ′′; ᾱ; P ′′ |= v2 : χ1 ⊲ w2

(s, µ)\P ⊑ (s, µ′′)\P ′′

2) By lemma reduction applied to the typing derivation of v1 from step
(0) and to the typing derivation of v2 from step (1), there exists µ′, P ′ and
u′ such that:

(w1 w2) −→
+ u′

s′; µ′; ᾱ1; P ′ ||= t′ : χ ⊲ u′

(s, µ′′)\P ′′ ⊑ (s′, µ′)\P ′

3) Conclusions are obtained as follows:

u −→+ u′ since u = (w1 u2) −→
∗ (w1 w2) −→

+ u′

s′; µ′; ᾱ; P ′ ||= t′ : χ ⊲ u′ from step (2)
(s, µ)\P ⊑ (s′, µ′)\P ′ by transitivity, from steps (1) and (2)

◮ Case: frame

0) The input state is typed as

s; µ; ᾱ; P1 ||= t : χ1 ⊲ u1 s; µ ⊢ C2 ∠ P2 ⊲ w2

s; µ; ᾱ; (P1 ⊎ P2) ||= t : (χ1 ∗ C2) ⊲ (u1, w2)
exe-frame

1) By induction hypothesis, there exists µ′, P ′
1 and u′

1 such that

u1 −→
+ u′

1

s′; µ′; ᾱ; P ′
1 ||= t′ : χ1 ⊲ u′

1

(s, µ)\P1
⊑ (s′, µ′)\P ′

1

19

2) Because (s, µ)\P1
⊑ (s′, µ′)\P ′

1
and since P1 and P2 are disjoint sets:

(s, µ) ⊑|P2
(s′, µ′)

3) The first conclusion is obtained by reduction under context:

u = (u1, w2) −→
+ (u′

1, w2) = u′

The second conclusion comes from the following typing derivation:

s; µ′; ᾱ; P ′
1 ||= t′ : χ1 ⊲ u′

1

stable-cap

(s, µ) ⊑|P2
(s′, µ′)

s; µ ⊢ C2 ∠ P2 ⊲ w2

s; µ′ ⊢ C2 ∠ P2 ⊲ w2

s; µ′; ᾱ; (P ′
1 ⊎ P2) ||= t′ : (χ1 ∗ C2) ⊲ (u′

1, w2)
exe-frame

The third conclusion (s, µ)\(P1⊎P2) ⊑ (s′, µ′)\(P ′

1
⊎P2) is a direct conse-

quence of (s, µ)\P1
⊑ (s′, µ′)\P ′

1
.

◮ Case: exe-sub

0) The input state is typed as

s; µ; ᾱ; P ||= t : χ1 ⊲ u1 χ1 ≤ χ ⊲ w

s; µ; ᾱ; P ||= t : χ ⊲ (w u1)
exe-sub

1) By induction hypothesis, there exists µ′, P ′ and u′
1 such that

u1 −→
+ u′

1

s′; µ′; ᾱ; P ′ ||= t′ : χ1 ⊲ u′
1

(s, µ)\P ⊑ (s′, µ′)\P ′

2) Conclusions are obtained by the derivation:

s; µ′; ᾱ; P ′ ||= t : χ1 ⊲ u′
1 χ1 ≤ χ ⊲ w

s; µ′; ᾱ; P ′ ||= t : χ ⊲ (w u′
1)

exe-sub

and the reduction sequence:

(w u1) −→
+ (w u′

1)

◮ Cases: exe-∃-intro, exe-∀-intro, exe-∀-elim

Trivial by induction hypothesis.

20

When the source term has reached a value, its trans-
lation converges to a corresponding value after a finite
number of steps.

Lemma termination

{

s; µ; ᾱ; P ||= v : χ ⊲ u ⇒ ∃µ′ P ′ w′,

u −→∗ w′

s; µ′; ᾱ; P ′ |= v : χ ⊲ w′

(s, µ)\P ⊑ (s, µ′)\P ′

Proof. By induction on the typing derivation.

◮ Case: exe-val

In this case, u is a value. Let µ′ = µ and P ′ = P and w′ = u. The typing
derivation for v is constructed using out-val.

◮ Case: exe-app

This case is impossible because an application is not a value.

◮ Case: exe-frame

0) The input state is typed as

s; µ; ᾱ; P1 ||= v : χ1 ⊲ u1 s; µ ⊢ C2 ∠ P2 ⊲ w2

s; µ; ᾱ; (P1 ⊎ P2) ||= v : (χ1 ∗ C2) ⊲ (u1, w2)
exe-frame

1) By induction hypothesis, there exists µ′, P ′
1 and w1 such that

u1 −→
∗ w1

s; µ′; ᾱ; P ′
1 |= v : χ ⊲ w

(s, µ)\P ⊑ (s, µ′)\P ′

1

2) Because (s, µ)\P1
⊑ (s, µ′)\P ′

1
and since P1 and P2 are disjoint sets:

(s, µ) ⊑|P2
(s, µ′)

3) Now let µ′ = µ′ and P ′ = (P ′
1 ⊎ P2) and w′ = (w1, w2). The reduction

sequence in the target language is given by:

u = (u1, w2) −→
∗ (w1, w2) = w′

21

The typing derivation for the output is built as:

s; µ′; ᾱ; P ′
1 |= v : χ1 ⊲ w1

stable-cap

(s, µ) ⊑|P2
(s, µ′)

s; µ ⊢ C2 ∠ P2 ⊲ w2

s; µ′ ⊢ C2 ∠ P2 ⊲ w2

s; µ′; ᾱ; (P ′
1 ⊎ P2) |= v : (χ1 ∗ C2) ⊲ (w1, w2)

out-frame

The third conclusion (s, µ)\(P1⊎P2) ⊑ (s, µ′)\(P ′

1
⊎P2) is a direct consequence

of (s, µ)\P1
⊑ (s, µ′)\P ′

1
.

◮ Case: exe-sub

0) The input state is typed as

s; µ; ᾱ; P ||= v : χ1 ⊲ u1 χ1 ≤ χ ⊲ w

s; µ; ᾱ; P ||= v : χ ⊲ (w u1)
exe-sub

1) By induction hypothesis, there exists µ′′, P ′′ and w1 such that

u1 −→
∗ w1

s; µ′′; ᾱ; P ′′ |= v : χ1 ⊲ w1

(s, µ)\P ⊑ (s, µ′′)\P ′′

2) By lemma reduce-sub-out there exists µ′, P ′ and w′ such that

(w w1) −→
+ w′

s; µ′; ᾱ; P ′ |= v : χ ⊲ w′

(s, µ′′)\P ′′ ⊑ (s, µ′)\P ′

3) The reduction in the target language is

(w u1) −→
∗ (w w1) −→ w′

the output state is typed as

s; µ′; ᾱ; P ′ |= v : χ ⊲ w′

22

and the inclusion (s, µ)\P ⊑ (s, µ′)\P ′ is obtained by transitivity.

◮ Case: exe-∃-intro

Apply the induction hypothesis, and conclude using rule out-∃-intro.

◮ Case: exe-∀-intro

Apply the induction hypothesis, and conclude using rule out-∀-intro.

◮ Case: exe-∀-elim

0) The typing derivation ends with:

s; µ; ᾱ; P ||= v : (∀α.τ) ⊲ u

s; µ; ᾱ; P ||= v : ([α → o] τ) ⊲ u
exe-∀-elim

1) By induction hypothesis, there exists µ′, P ′ and w′ such that:

u −→∗ w′

s; µ′; ᾱ; P ′ |= v : (∀α.τ) ⊲ w′

(s, µ)\P ⊑ (s, µ′)\P ′

2) By inversion of typing (only rule out-val applies), P ′ = ∅ and:

µ′; ᾱ ⊢ v : (∀α.τ) ⊲ w′

3) By type substitution (typ-subst), it follows:

µ′; ᾱ ⊢ v : ([α → o] τ) ⊲ w′

4) It remains to build the typing derivation for the output v:

µ′; ᾱ ⊢ v : ([α → o] τ) ⊲ w′

s; µ′; ᾱ; ∅ |= v : ([α → o] τ) ⊲ w′ out-val

6 Additional Results

A program well-typed in System F is typable in the sys-
tem and its functional translation is the program itself.

23

Lemma conservativity-over-F

∆ ⊢Fµ
v : τ ⇒ ∆ ⊢ v : τ ⊲ v

∆ ⊢Fµ
t : τ ⇒ ∆ t : τ ⊲ t

Proof. Trivial by induction on the typing derivation, and using the two
admissible rules:

proji : τ1 → τ2 → τi ⊲ proji

case : (τ1 → τ) → (τ2 → τ) → (τ1 + τ2) → τ ⊲ case

Any translated program is well-typed in System F, and
admit for type the translation of the type of its source
program.

Lemma translation-preserves-typing

∆ ⊢ v : τ ⊲ w ⇒ J∆K ⊢Fµ
w : JτK

Γ t : χ ⊲ u ⇒ JΓK ⊢Fµ
u : JχK

s; µ; ᾱ; P ||= t : χ ⊲ u ⇒ ⊢Fµ
u : JχK

s; µ; ᾱ; P |= v : χ ⊲ w ⇒ ⊢Fµ
w : JχK

s; µ ⊢ v : θ ∠ P ⊲ w ⇒ ⊢Fµ
w : JθK

s; µ ⊢ C ∠ P ⊲ w ⇒ ⊢Fµ
w : JCK

τ1 ≤ τ2 ⊲ w ⇒ ⊢Fµ
w : Jτ1K → Jτ2K

θ1 ≤ θ2 ⊲ w ⇒ ⊢Fµ
w : Jθ1K → Jθ2K

C1 ≤ C2 ⊲ w ⇒ ⊢Fµ
w : JC1K → JC2K

χ1 ≤ χ2 ⊲ w ⇒ ⊢Fµ
w : Jχ1K → Jχ2K

Proof. All judgments are immediate by induction. Notice that these prop-
erties hold by design of the system. �

24

