
Source-to-Source Optimizations
Validated using Separation Logic

Guillaume Bertholon1,2, Arthur Charguéraud2,1, and Thomas
Kœhler2,1

1Université de Strasbourg, CNRS, ICube, France
2Inria, France

We present a demo of OptiTrust, an interactive framework for optimizing
general-purpose programs via series of programmer-guided, source-to-source
transformations. Optimization steps are described in transformation scripts,
expressed as OCaml programs. At every step, the programmer may interactively
visualize the effect of the transformation as the difference between two pieces of
human-readable code. The framework currently applies to C code. That said,
our internal AST is based on the imperative lambda-calculus, thus we expect it
to be straightforward to extend OptiTrust for optimizing OCaml code.

A central question is how to verify that nontrivial transformations preserve
the semantics of the code. To that end, we require the programmer to provide
Separation Logic annotations, and use them to compute resource usage through-
out the code. As we show, this information suffices to justify the correctness
of numerous essential source-to-source transformations, such as swapping of
instructions, swapping of loops, hoisting of instructions out of loops, etc.

Producing high-performance code is critical in many domains, in particular numerical
simulation, image processing and machine learning. Yet, achieving high-performance on
modern hardware is a very challenging task.

A common industrial practice is to optimize code by hand in languages such as C/C++
[TV14, MLP+17] or Fortran [VD18]. On the one hand, the process of manually rewriting
code is highly time-consuming. In particular, several optimization paths must be empirically
explored because code performance is hard to assess without benchmarking. On the other
hand, the output of manual rewriting is very unsatisfying: the optimized code is much
longer than the original, hard to read, hard to maintain, hard to adapt to other hardware,
and—worst of all—is highly likely to contain bugs.

Another common industrial practice consists of using DSLs, e.g., Halide [RKBA+13] or
TVM [CMJ+18]. A DSL consists of a programming language restricted to a particular
application domain, accompanied with a compiler providing specific optimizations for that
language. The main limitation of that approach is that it falls completely short when the
programmer requires features that are just outside of the scope of DSL.

OptiTrust is an optimization framework that aims to support optimization of general-
purpose code. OptiTrust operates by applying a series of source-to-source transformations,
guided by the programmer. The programmer interactively develops a transformation script.
At every transformation step, the programmer may visualize the corresponding diff between
pieces of human-readable code.

Prior work on OptiTrust [CBRB22] has demonstrated its ability to reproduce a state-of-
the-art optimized implementation of a numerical Particle-In-Cell simulation, as well as an

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 1



OptiTrust Bertholon, Charguéraud, and Kœhler

void mm(float* C, float* A, float* B, int m, int n, int p) {
__reads("A ⇝ Matrix2(m, p), B ⇝ Matrix2(p, n)");
__modifies("C ⇝ Matrix2(m, n)");
for (int i = 0; i < m; i++) {
__modifies("Group(range(0, n, 1), fun j -> &C[i][j] ⇝ Cell)");
__seq_reads("A ⇝ Matrix2(m, p), B ⇝ Matrix2(p, n)");
for (int j = 0; j < n; j++) {
__modifies("&C[i][j] ⇝ Cell");
__seq_reads("A ⇝ Matrix2(m, p), B ⇝ Matrix2(p, n)");
float sum = 0.0f;
for (int k = 0; k < p; k++) {
__GHOST_BEGIN(focusA, matrix2_ro_focus, "A, i, k");
__GHOST_BEGIN(focusB, matrix2_ro_focus, "B, k, j");
sum += A[i][k] * B[k][j];
__GHOST_END(focusA);
__GHOST_END(focusB);

}
C[i][j] = sum;

}
}

}
void mm1024(float* C, float* A, float* B) {
__reads("A ⇝ Matrix2(1024, 1024), B ⇝ Matrix2(1024, 1024)");
__modifies("C ⇝ Matrix2(1024, 1024)");
mm(C, A, B, 1024, 1024, 1024);

}

Figure 1. Unoptimized code for matrix multiplication: A and B denote the input, and C
the output; and mm1024 specializes input sizes to 1024.

optimized matrix multiplication kernel generated by the specialized compiler TVM [CMJ+18].
However, code transformations in that prior work were unchecked, in the sense that the user
could request transformations that do not preserve the semantics of the code.

The present work aims at equipping OptiTrust with means of validating the correctness
of the transformations described in the user’s scripts. This validation process leverages
Separation Logic shape information. To compute this information at every program point,
we require the user to provide logical annotations on functions and loops (as well as on
function calls with nontrivial instantiation of auxiliary variables). These annotations may be
viewed either as a weak form of Separation Logic (describing shapes of data structures but
not specifying the values stored inside), or as a strong form of typing (more expressive than
Rust). As we show, this information suffices to verify transformations such as reordering
of instructions or loops, or loop parallelization. Beyond the validation of transformations,
another central aspect of our work is to show how the loop annotations can be automatically
maintained through a series of transformations affecting the loops. Through our demo, we
will highlight the key components of OptiTrust:
1. An internal, simplified abstract syntax tree (AST) of an imperative lambda-calculus,

from which readable C code can be recovered throughout transformations. The parsed
source code is encoded into this OptiTrust AST, pushing all mutable variables behind
a pointer. Then, the AST can be pretty-printed back to C code, using annotations to
disambiguate between patterns that are encoded in the same way. A similar idea of a
simplified AST has been employed in the Cetus project [DBM+09].

2. An annotation language for lightweight separation logic predicates [Cha20]. These
annotations include function contracts, loop contracts, and ghost code. Function contracts
specify the ownership and the shape of the data accessible from pointers. Ghost code
are annotations that allow to reorganize the view on a data structure. Loops contracts
are optional. They can be used in particular to check if loops are parallelizable.

3. A system to compute available separation logic resources at every program point and check
specifications. This can be compared to the Rust type system, yet with a more explicit
management of aliasing through fractional permissions, or with RefinedC [SLK+21] with
less automation but more flexibility thanks to expressive ghost code annotations.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 2



OptiTrust Bertholon, Charguéraud, and Kœhler

Figure 2. Transformation: Loop.tile (int 32)̃ index:"bj"̃ bound:TileDivides [cFor "j"].
Replace the loop on j of 1024 iterations, with two nested loops on bj and j of
32 iterations each. The inserted operation tile_divides is a ghost instruction.

4. A system for targeting program points, somewhat similar to XPath [CD+99] for XML,
but specialized for an AST. This system allows to describe, in a concise and robust
manner, one or several program points to transform.

5. A library of general-purpose transformations that can leverage resources computed
at each program point to justify their correctness, including: core data layout trans-
formations [SSH10], instruction-level transformations [AK02], control flow transforma-
tions [Wol95]. Transformation also preserve or adapt annotations on functions and loops,
and insert ghost operations if needed.

6. A scripting language, embedded in OCaml, for describing transformations. Transfor-
mation scripts are a classic technique for programmer-guided optimization frameworks
[BHRS08, BZHB16, NS16, ZCG18, CCH08, RKH+11, BC20, YQ08, YWC14]. Trans-
formation scripts provide fine-grained control, and they allow to chain large numbers of
transformation steps.

7. An interactive interface allowing to visualize code diffs associated with the transformation
at a given line of the script, via a key shortcut in the code editor.

Our running example will consist of an optimization script for a matrix multiplication
function. Figure 1 shows the input code, including its annotations. In particular, each
function and each loop has a contract (seq_reads(H) indicates that every loop iteration
reads the full resource H, whereas reads(Hi) indicates that only the i-th iteration reads the
resource Hi.) We will explain how to annotate the C code with our lightweight Separation
Logic predicates, and explain how OptiTrust type-checks the code to compute resources
at every program point. We will then present the transformation script, and explain how
transformations are implemented. Figure 2 shows the example of a tiling transformation. The
transformation does not improve performance by itself but allows for efficient parallelization
schemes in a subsequent transformation (e.g. usage of SIMD instructions for the inner loop).

We hope to engage with the JFLA community, in particular on the benefits of exploit-
ing lightweight Separation Logic, as well as on potential applications of source-to-source
transformations on C and OCaml programs.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 3



OptiTrust Bertholon, Charguéraud, and Kœhler

References
[AK02] J. Allen et K. Kennedy : Optimizing Compilers for Modern Architectures.

2002.

[BC20] João Bispo et João MP Cardoso : Clava: C/C++ source-to-source compila-
tion using LARA. SoftwareX, 12:100565, 2020.

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam et P. Sadayappan : A
practical automatic polyhedral parallelizer and locality optimizer. In PLDI’08
ACM Conf. on Programming language design and implementation, 2008.

[BZHB16] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot et Cédric Bastoul
: Opening Polyhedral Compiler’s Black Box. In IEEE/ACM International
Symp. on Code Generation and Optimization, mars 2016.

[CBRB22] Arthur Charguéraud, Begatim Bytyqi, Damien Rouhling et Yann A
Barsamian : OptiTrust: an Interactive Framework for Source-to-Source
Transformations. working paper, septembre 2022.

[CCH08] Chun Chen, Jacqueline Chame et Mary W. Hall : CHiLL: A framework for
composing high-level loop transformations. Technical Report 08-897, University
of Southern California, Jun 2008.

[CD+99] James Clark, Steve DeRose et al. : XML path language (xpath), 1999.

[Cha20] Arthur Charguéraud : Separation logic for sequential programs (functional
pearl). Proc. ACM Program. Lang., 4(ICFP), aug 2020.

[CMJ+18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin et Arvind Krishnamurthy : TVM: An automated end-to-end
optimizing compiler for deep learning. In OSDI, 2018.

[DBM+09] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann
et Samuel Midkiff : Cetus: A source-to-source compiler infrastructure for
multicores. Computer, 42(12):36–42, 2009.

[MLP+17] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej et Christoph
Kessler : Benchmarking opencl, openacc, openmp, and cuda: program-
ming productivity, performance, and energy consumption. In Proceedings of
the 2017 Workshop on Adaptive Resource Management and Scheduling for
Cloud Computing, pages 1–6, 2017.

[NS16] Kedar S. Namjoshi et Nimit Singhania : Loopy: Programmable and for-
mally verified loop transformations. In Static Analysis - 23rd International
Symposium, SAS, volume 9837 de LNCS, 2016.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand et Saman Amarasinghe : Halide: A language and compiler
for optimizing parallelism, locality, and recomputation in image processing
pipelines. In Conf. on Programming Language Design and Implementation,
2013.

[RKH+11] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen et Jacqueline
Chame : A programming language interface to describe transformations and
code generation. In Languages and Compilers for Parallel Computing, 2011.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 4



OptiTrust Bertholon, Charguéraud, and Kœhler

[SLK+21] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memar-
ian, Derek Dreyer et Deepak Garg : Refinedc: Automating the foundational
verification of c code with refined ownership types. In Proceedings of the 42nd
ACM SIGPLAN International Conf. on Programming Language Design and
Implementation, pages 158–174, 2021.

[SSH10] I-Jui Sung, John A. Stratton et Wen-Mei W. Hwu : Data layout trans-
formation exploiting memory-level parallelism in structured grid many-core
applications. PACT ’10, pages 513–522, 2010.

[TV14] Ashkan Tousimojarad et Wim Vanderbauwhede : Comparison of three
popular parallel programming models on the intel xeon phi. In Euro-Par
2014: Parallel Processing Workshops: Euro-Par 2014 International Workshops,
Porto, Portugal, August 25-26, 2014, Revised Selected Papers, Part II 20, pages
314–325. Springer, 2014.

[VD18] Wim Vanderbauwhede et Gavin Davidson : Domain-specific acceleration
and auto-parallelization of legacy scientific code in fortran 77 using source-to-
source compilation. Computers & Fluids, 173:1–5, 2018.

[Wol95] M. Wolfe : High performance compilers for parallel computing. 1995.

[YQ08] Qing Yi et Apan Qasem : Exploring the optimization space of dense linear
algebra kernels. In LCPC, 2008.

[YWC14] Qing Yi, Qian Wang et Huimin Cui : Specializing compiler optimizations
through programmable composition for dense matrix computations. In Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-47, page 596–608, USA, 2014.

[ZCG18] Oleksandr Zinenko, Lorenzo Chelini et Tobias Grosser : Declarative
Transformations in the Polyhedral Model. Research Report RR-9243, décembre
2018.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 5


