
Interactive Theorem Proving (ITP'10) Edinburgh, 2010/07/14

Arthur Charguéraud

The
Optimal Fixed Point

Combinator

INRIA

2

Example: filter function for streams

Step 1: write a functional, e.g. for filter on streams

Definition Filter filter s :=
let (x:::t) := s in
if (P x) then (x ::: filter t) else (filter t).

// "filter" is a partial function mixing recursion and co-recursion

Step 3: prove a fixed point equation

Lemma filter_fix : forall s, infinitely_many P s ->
filter s ≈≈≈≈ Filter filter s.

Step 2: construct its fixed point (non-constructively)

Definition filter := Fix Filter. // return type inhabited

Definition filter := FixModulo (≈≈≈≈) Filter. // actual

Step 4: used that equation to unfold the definition

filter (x:::t) // rewrite filter_fix

≈≈≈≈ Filter filter (x:::t) // unfold Filter

≈≈≈≈ if (P x) then (x:::filter t) else (filter t)

3

Examples of recursive functions

Basic recursive function:

Definition Log log x :=
if x <= 1 then 0 else 1 + log (x/2).

Definition log := FixModulo (=) Log.

Nested recursion, e.g. the nested zero function:

Definition F f x =
if x = 0 then 0 else f(f(x-1)).

// need to justify that f(x-1) is smaller than x

Higher-order recursion, e.g. a function modifying trees:

type tree = Leaf of nat | Node of list tree
Definition Incr incr x := match x with
| Leaf n => Leaf (n+1)
| Node xs => Node (List.map incr xs)

// need to justify that "incr" is applied to smaller trees

Definition log := Fix Log. // equivalent to the line above

4

Examples of co-recursive values

Definition of co-recursive values:

Definition F s := 0 ::: map succ s.

Definition s := FixValModulo (≈≈≈≈) F. // 0:::1:::2:::3:::...

Lemma s_fix : s ≈≈≈≈ F s.

A trickier definition:

Definition F s := 2 ::: filter (≥ ≥ ≥ ≥ 1) s.

// F defines the stream "2:::2:::2:::...", because 2 ≥ 1.

An invalid definition:

Definition F s := 0 ::: filter (≥ ≥ ≥ ≥ 1) s.

// This functional does not admit a fixed point

Definition s := FixValModulo (≈≈≈≈) F.

// The stream s is unspecified

5

Program extraction is possible

The fixed point combinators are not constructive.

They rely on Hilbert's epsilon operator, which does not
have any computational equivalent.

Extraction towards a "let-rec" is possible:

Extract Constant Fix =>
"(\bigf -> let x = bigf x in x)". // Haskell code

→ Partial correctness of the extracted code is to be
expected (although I have not proved it formally)

→ Same trick used, e.g., by Bertot et al (2002)

6

Main fixed point approaches

– Well-founded recursion: for partial functions, the
domain needs to appear explicitly.

– Domain-predicate recursion (Dubois & Donzeau-
Gouge, Bove & Capretta) and inductive graph
predicate (Krauss): works for recursion but does not
seem to extend to co-recursion.

– Co-recursion with guard conditions: definitions
need to be modified so as to satisfy guard conditions
either syntactic or type-based (e.g., work by Bertot
and others), but such tricks are not always possible.

– Contraction conditions: allow proving the
existence of a unique fixed point on a given domain,
but does not help in constructing partial fixed point.

7

Ingredients and contribution

The combinator is built upon two ingredients:

1) Optimal fixed points

→ First formalization of optimal fixed point theory

→ First fixed point library using optimal fixed points

2) Contraction conditions

→ Generalization of contr. conditions for co-recursion

→ Unification of the various contraction conditions

8

Optimal fixed points

Positive answer [Manna and Shamir, 1975]:

Any functional admits an optimal fixed point.

Consider the combinator for total recursive function:

Definition Fix F :=
εεεεf. (forall x, f x = F f x).

It generalizes to partial functions with something like:

Definition Fix D F :=
εεεεf. (forall x, D x -> f x = F f x).

However, the domain must be provided explicitly.

Question: is there a best possible domain D that
can be deduced from the functional F alone?

9

Domains of fixed points

The union of the domains of all the fixed points
might not be the domain of a fixed point:

→ This generally happens with inconsistent fixed points

f1

f2 f3

f4

f5

f2 x ≠≠≠≠ f3 x

10

Domain of the optimal fixed point

The restriction to the set of arguments for which
all fixed points return the same results:

→ This domain admits exactly one fixed point, which
captures the maximal amount of non-ambiguous
information contained in the functional.

f1

f2 f3

f4

f5

f2 x ≠≠≠≠ f3 x

f2 x = f3 x

11

Optimal fixed point combinator

The optimal fixed point of a functional F is the
largest generally-consistent fixed point of F.

(A fixed point of F is generally-consistent if it does not
disagree with any other fixed point of F).

Definition Fix A B (F:(A->B)->(A->B)) : A->B :=

εεεεf. (optimal_fixed_point_of F f).

// Remark: the type B is required to be inhabited.

// Partial functions are represented in the logic as pairs of type
(A→Prop)*(A->B). The optimal fixed point returned by the
combinator Fix is undefined outside of the optimal domain.

Another construction (Gonthier, 2005)

Definition Fix A B F := fun x =>

let f := εεεεf.(∃∃∃∃D. fixed_point_on D F f ∧∧∧∧ x∈∈∈∈D) in (f x).

12

Contraction conditions

A contraction condition is a sufficient condition for a
functional to admit a unique fixed point, expressing
the fact that the functional brings its arguments closer.

– Guarantees unique fixed point in Banach spaces.

|| F(x) - F(y) || ≤ α · || x - y || with α < 1

– Paulson (1992): implement the theory of inductive
definitions in Isabelle/HOL.

– Matthews (1999): formalize non-guarded co-
recursive definitions.

– Matthews & Krstić (2003): formalize partial
recursive functions with nested calls.

13

Fixed point theorems

How to use contraction conditions to reason on
results of the optimal fixed point combinator:

Theorem Fix_spec : forall F D f,
f = Fix F -> contractive_on D F ->
forall x, D x -> f x = F f x.

D

optimal domain of F

1) Given a functional F,
build f := Fix F.

2) Prove that F satisfies

a contraction condition
on some domain D.

3) Deduce that f
satisfies the fixed point
equation on D.

14

What's next

Application of the optimal fixed point combinator

using existing contraction conditions:

– Total recursion – Co-recursive values

– Partial function – Co-recursive functions

– Nested recursion – Mixed rec./co-recursive

(Supported but not presented: higher-order recursion)

Generalization and unification of the various
contraction conditions:

– Generalization of the contraction condition

– Presentation of the unifying fixed point theorem

15

Treatment of total functions

Fixed point theorem for total recursive functions:

Lemma Fix_spec : forall f F R, well_founded R ->
f = Fix F ->
(forall f1 f2 x,

(forall y, R y x -> f1 y = f2 y) ->
F f1 x = F f2 x) ->

(forall x, f x = F f x).

Illustration with the functional Log:

Hypothesis: forall y, y < x -> f1 y = f2 y

Goal: Log f1 x = Log f2 x

Goal: (if x <= 1 then 0 else 1 + f1(x/2))
= (if x <= 1 then 0 else 1 + f2(x/2))

Subgoal: x <= 1 |- 0 = 0
Subgoal: x > 1 |- 1 + f1(x/2) = 1 + f2(x/2)

Apply the hypothesis to y = x/2, and check (x/2) < x

16

Treatment of partial functions

Restriction to arguments from a domain D:

Lemma Fix_spec : forall f F R D, well_founded R ->
f = Fix F ->
(forall f1 f2 x, D x ->

(forall y, D y -> R y x -> f1 y = f2 y) ->
F f1 x = F f2 x) ->

(forall x, D x -> f x = F f x).

→ The argument x is assumed to be in the domain D.

→ Recursive calls must be made to values y inside D.

→ The fixed point equation is available only on D.

17

Treatment of nested recursion

The basic contraction condition does not suffice.
Consider for example the nested zero function:

Definition F f x =
if x = 0 then 0 else f(f(x-1)).

→ For the outer recursive call f(f(x-1)), we need to
know that the argument f(x-1) is smaller than x.

→ We need to know that the function f returns zero.

Adding an invariant [Matthews & Krstić, 2003]:

Lemma Fix_spec : forall f F R Q, well_founded R ->
f = Fix F ->
(forall f1 f2 x,
(forall y, y < x -> f1 y = f2 y /\ Q y (f1 y)) ->
F f1 x = F f2 x /\ Q x (F f1 x)) ->

(forall x, f x = F f x /\ Q x (f x)).

18

Treatment of co-recursive values

Example:

Definition F s := 0 ::: map succ s. // 0:::1:::2:::3:::...

Definition s := FixValModulo (≈≈≈≈) F.

Lemma s_fix : s ≈≈≈≈ F s.

Fixed point combinator for values:

→ FixValModulo (≈≈≈≈) F picks a fixed point of F modulo (≈≈≈≈)

The insufficient, naive definition:

Definition FixValModulo (≈≈≈≈) F :=
εεεεx.(x ≈≈≈≈ F x).

The appropriate, standard definition:

Definition FixValModulo (≈≈≈≈) F :=
εεεεx.(forall y, y ≈≈≈≈ x -> y ≈≈≈≈ F y).

19

Contraction condition for streams

The contraction condition [Matthews, 1999]:

forall i s1 s2, s1 ≈ ≈ ≈ ≈i s2 -> F x1 ≈ ≈ ≈ ≈i+1 F s2

implies the existence of a unique fixed point s modulo
bisimilarity, where (≈≈≈≈i) relates two streams that are

identical up to their i-th element.

Illustration with the stream of natural numbers:

Hypothesis: s1 ≈ ≈ ≈ ≈i s2

Goal: F s1 ≈ ≈ ≈ ≈i+1 F s2

Goal: 0 ::: map succ s1 ≈ ≈ ≈ ≈i+1 0 ::: map succ s2

Goal: map succ s1 ≈ ≈ ≈ ≈i map succ s2

Exploit the fact that an application of map preserves
the degree of similarity between two streams.

20

General presentation of c.o.f.e.'s

Fixed point theorem from Matthews (1999)
polished by di Gianantonio & Miculan (2003):

The contraction condition

forall i x1 x2,
(forall j<i, x1 ≈ ≈ ≈ ≈j x2) ->
F x1 ≈ ≈ ≈ ≈i F x2

ensures the existence of a unique fixed point x of F
modulo (≈≈≈≈), where:

– F has type A→→→→A

– I is a type with a transitive well-founded relation <

– ≈≈≈≈ is the intersection of the equivalence relations ≈≈≈≈i
– (≈≈≈≈i)i:I needs to be a complete family of relations

21

Treatment of co-recursive functions

The contraction condition for co-recursive functions
given by Matthews (1999) leads to the following

fixed point theorem for co-recursive functions:

Lemma FixModulo_spec : forall F f (≈≈≈≈i)i∈∈∈∈I,

f = FixModulo (≈≈≈≈) F -> cofe (≈≈≈≈i)i∈∈∈∈I ->

(forall f1 f2 x i,

(forall j<i, forall y, f1 y ≈ ≈ ≈ ≈j f2 y) ->

F f1 x ≈ ≈ ≈ ≈i F f2 x) ->

forall x, f x ≈≈≈≈ F f x.

22

Contraction condition for filter

Matthews (1999) also showed how to derive the fixed
point theorem for mixed rec/corec functions:

Lemma FixModuloLexico_spec : forall (≈≈≈≈i)i∈∈∈∈I F f D,

f = FixModulo (≈≈≈≈) F -> cofe (≈≈≈≈i)i∈∈∈∈I ->

(forall f1 f2 x i, D x ->
(forall y j, (j,y)<(i,x) -> D y -> f1 y ≈ ≈ ≈ ≈j f2 y) ->
F f1 x ≈ ≈ ≈ ≈i F f2 x) ->

forall x, D x -> f x ≈≈≈≈ F f x.

Illustration with the filter function:

→(j,y)<(i,x) is a lexicographical comparison.

→ i decreases when the head value satisfies P.

→ x decreases when the next element satisfying P gets

closer.

23

Co-recursion with an invariant

The tricky co-recursive definition:

Definition F s := 2 ::: filter (≥ ≥ ≥ ≥ 1) s.

New generalized form of contraction conditions:

forall x1 x2 i,
x1 ≈ ≈ ≈ ≈i x2 ∧∧∧∧ Q i x1 ∧∧∧∧ Q i x2 ->
F x1 ≈ ≈ ≈ ≈i+1 F x2 ∧∧∧∧ Q (i+1) (F x1)

Illustration: it suffices to consider an invariant stating
that the elements before index i are greater than 1:

Definition Q i s := (∀∀∀∀j<i, nth j s ≥ ≥ ≥ ≥ 1).

Side-condition: the invariant Q has to be continuous.

Here, we need to show that if Q i s holds for any i,
then s contains only values greater than 1.

24

Key idea about invariants

Recursive definition →→→→ specify results

post-condition Q x (f x)

Co-recursive definition →→→→ specify prefixes

invariant Q i s

25

The unifying fixed point theorem

If the following hypotheses hold

– F is a functional of type A->A (where A is inhabited)

– (A,I,<,≈≈≈≈i) is a c.o.f.e.

– Q is a continuous property of type I->A->Prop

– The following contraction condition holds

∀∀∀∀ i x1 x2,
(∀∀∀∀j<i, x1 ≈ ≈ ≈ ≈j x2 ∧∧∧∧ Q j x1 ∧∧∧∧ Q j x2) →→→→
F x1 ≈ ≈ ≈ ≈i F x2 ∧∧∧∧ Q i (F x1)

Then we can deduce that

– F admits a unique fixed point x modulo ≈≈≈≈

– Moreover x satisfies the invariant: ∀∀∀∀i, Q i x

26

Several examples formalized

Recursion: Lines of proofs

– log function 2

– gcd function 3

– div function 3

– nested zero function 3

– trees with lists of subtrees 4

– Ackermann's function 3

– McCarthy's function 8

Co-recursion: (≈ 100 lines to establish a new c.o.f.e.)

– constant stream 3

– mutually-defined streams 9

– filter on streams 13

– "product" of infinite trees 24

27

Conclusion

1) Optimal fixed points:

– for long, a curiosity about circular program definitions

– the tool of choice to justify circular logical definitions

– allows to separate definitions from their justification

2) Contraction conditions:

– well-foundedness and productivity inside the logic

– support for a very large scope of circular definitions

– all contraction conditions derivable from a single one

(1) + (2) = Fix F

Thanks!

Extended version of the paper available from:

http://arthur.chargueraud.org/research/2010/fix

