The
 Optimal Fixed Point Combinator

Arthur Charguéraud
INRIA

Interactive Theorem Proving (ITP'10) Edinburgh, 2010/07/14

Example: filter function for streams

Step 1: write a functional, e.g. for filter on streams
Definition Filter filter s :=
let (x:: : t) $:=s$ in
if (P x) then (x : : filter t) else (filter t).
// "filter" is a partial function mixing recursion and co-recursion
Step 2: construct its fixed point (non-constructively)
Definition filter := Fix Filter. // return type inhabited
Definition filter := FixModulo (\approx) Filter. // actual
Step 3: prove a fixed point equation
Lemma filter_fix : forall s, infinitely_many P s \rightarrow filter s \approx Filter filter s.

Step 4: used that equation to unfold the definition

```
    filter (x:::t)
\approx Filter filter (x:::t)
\approx if (P x) then (x:::filter t) else (filter t)
```


Examples of recursive functions

Basic recursive function:

```
Definition Log log x :=
    if x <= 1 then O else 1 + log (x/2).
Definition log := FixModulo (=) Log.
Definition log := Fix Log. // equivalent to the line above
```

Nested recursion, e.g. the nested zero function:
Definition $F \mathbf{f}=$
if $x=0$ then 0 else $f(f(x-1))$.
// need to justify that $f(x-1)$ is smaller than x
Higher-order recursion, e.g. a function modifying trees:
type tree $=$ Leaf of nat | Node of list tree
Definition Incr incr x := match x with
Leaf $n=>$ Leaf ($n+1$)
Node $x s=>$ Node (List.map incr xs)
// need to justify that "incr" is applied to smaller trees

Examples of co-recursive values

Definition of co-recursive values:

```
Definition F s := 0 ::: map succ s.
Definition s := FixValModulo (\approx) F. // 0:::1:::2:::3:::...
Lemma s_fix : s = F s.
```

A trickier definition:
Definition F s := 2 :: : filter (\geq 1) s.
// F defines the stream "2:::2:::2:::...", because $2 \geq 1$.

An invalid definition:

Definition F s := 0 :: : filter (\geq 1) s.
// This functional does not admit a fixed point
Definition s := FixValModulo (\approx) .
// The stream s is unspecified

Program extraction is possible

The fixed point combinators are not constructive. They rely on Hilbert's epsilon operator, which does not have any computational equivalent.

Extraction towards a "let-rec" is possible:

```
Extract Constant Fix =>
    "(\bigf -> let x = bigf x in x)". // Haskell code
```

\rightarrow Partial correctness of the extracted code is to be expected (although I have not proved it formally) \rightarrow Same trick used, e.g., by Bertot et al (2002)

Main fixed point approaches

- Well-founded recursion: for partial functions, the domain needs to appear explicitly.
- Domain-predicate recursion (Dubois \& DonzeauGouge, Bove \& Capretta) and inductive graph predicate (Krauss): works for recursion but does not seem to extend to co-recursion.
- Co-recursion with guard conditions: definitions need to be modified so as to satisfy guard conditions either syntactic or type-based (e.g., work by Bertot and others), but such tricks are not always possible.
- Contraction conditions: allow proving the existence of a unique fixed point on a given domain, but does not help in constructing partial fixed point.

Ingredients and contribution

The combinator is built upon two ingredients:

1) Optimal fixed points

\rightarrow First formalization of optimal fixed point theory
\rightarrow First fixed point library using optimal fixed points
2) Contraction conditions
\rightarrow Generalization of contr. conditions for co-recursion
\rightarrow Unification of the various contraction conditions

Optimal fixed points

Consider the combinator for total recursive function:

```
Definition Fix F :=
    \varepsilonf. (forall x, f x = F f x).
```

It generalizes to partial functions with something like:

```
Definition Fix D F :=
    \varepsilonf. (forall x, D x -> f x = F f x).
```

However, the domain must be provided explicitly.
Question: is there a best possible domain \mathbf{D} that can be deduced from the functional F alone?

Positive answer [Manna and Shamir, 1975]:
Any functional admits an optimal fixed point.

Domains of fixed points

The union of the domains of all the fixed points might not be the domain of a fixed point:

\rightarrow This generally happens with inconsistent fixed points

Domain of the optimal fixed point

The restriction to the set of arguments for which all fixed points return the same results:

\rightarrow This domain admits exactly one fixed point, which captures the maximal amount of non-ambiguous information contained in the functional.

Optimal fixed point combinator

The optimal fixed point of a functional F is the largest generally-consistent fixed point of F.

(A fixed point of F is generally-consistent if it does not disagree with any other fixed point of F).

```
Definition Fix A B (F:(A->B) -> (A->B)) : A->B :=
    \varepsilonf. (optimal_fixed_point_of F f).
```

// Remark: the type B is required to be inhabited.
// Partial functions are represented in the logic as pairs of type ($\mathrm{A} \rightarrow$ Prop)* $(\mathrm{A}->\mathrm{B})$. The optimal fixed point returned by the combinator Fix is undefined outside of the optimal domain.

Another construction (Gonthier, 2005)

```
Definition Fix A B F := fun x =>
    let f := &f.(\existsD. fixed_point_on D F f ^ x\inD) in (fx).
```


Contraction conditions

A contraction condition is a sufficient condition for a functional to admit a unique fixed point, expressing the fact that the functional brings its arguments closer.

- Guarantees unique fixed point in Banach spaces.

$$
\|F(x)-F(y)\| \leq \alpha \cdot\|x-y\| \quad \text { with } \alpha<1
$$

- Paulson (1992): implement the theory of inductive definitions in Isabelle/HOL.
- Matthews (1999): formalize non-guarded corecursive definitions.
- Matthews \& Krstić (2003): formalize partial recursive functions with nested calls.

Fixed point theorems

How to use contraction conditions to reason on results of the optimal fixed point combinator:

1) Given a functional F, build $\mathrm{f}:=\mathrm{Fix} \mathrm{F}$.
2) Prove that F satisfies a contraction condition on some domain D .
3) Deduce that f satisfies the fixed point
 equation on D.
```
Theorem Fix_spec : forall F D f,
    f = Fix F -> contractive_on D F ->
    forall x, D x m f x = F f x.
```


What's next

Application of the optimal fixed point combinator using existing contraction conditions:

- Total recursion
- Partial function
- Nested recursion
- Co-recursive values
- Co-recursive functions
- Mixed rec./co-recursive
(Supported but not presented: higher-order recursion)

Generalization and unification of the various contraction conditions:

- Generalization of the contraction condition
- Presentation of the unifying fixed point theorem

Treatment of total functions

Fixed point theorem for total recursive functions:

```
Lemma Fix_spec : forall f F R, well_founded R ->
    f = Fix F ->
    (forall f1 f2 x,
        (forall Y, R Y x -> f1 Y = f2 Y) ->
        F f1 x = F f2 x) ->
    (forall x, f x = F f x).
```

Illustration with the functional Log:
Hypothesis: forall y, $y<x->f 1 y=f 2 y$
Goal: Log $\mathrm{f} 1 \mathrm{x}=\log \mathrm{f} 2 \mathrm{x}$
Goal: (if $\mathrm{x}<=1$ then 0 else $1+\mathrm{f}(\mathrm{x} / 2)$) $=($ if $x<=1$ then 0 else $1+f 2(x / 2)$)

Subgoal: $x<=1 \quad\left|\begin{array}{l}-1=0 \\ \text { Subgoal: } x>1\end{array}\right|-1+f 1(x / 2)=1+f 2(x / 2)$
Apply the hypothesis to $y=x / 2$, and check (x/2) < x

Treatment of partial functions

Restriction to arguments from a domain D :

```
Lemma Fix_spec : forall f F R D, well_founded R ->
    f = Fix F ->
    (forall f1 f2 x, D x ->
            (forall Y, D Y > R Y x -> f1 Y = f2 Y) ->
            F f1 x = F f2 x) ->
    (forall x, D x m f x = F f x).
```

\rightarrow The argument x is assumed to be in the domain D .
\rightarrow Recursive calls must be made to values y inside D.
\rightarrow The fixed point equation is available only on D .

Treatment of nested recursion

The basic contraction condition does not suffice. Consider for example the nested zero function:

```
Definition F f x =
    if x = O then 0 else f(f(x-1)).
```

\rightarrow For the outer recursive call $\mathrm{f}(\mathrm{f}(\mathrm{x}-1))$, we need to know that the argument $f(x-1)$ is smaller than x.
\rightarrow We need to know that the function f returns zero.
Adding an invariant [Matthews \& Krstić, 2003]:

```
Lemma Fix_spec : forall f F R Q, well_founded R ->
    f = Fix F ->
    (forall f1 f2 x,
        (forall Y, Y < x -> f1 Y = f2 Y /\ Q Y (f1 Y)) ->
        F f1 x = F f2 x /\ Q x (F f1 x) ) ->
    (forall x, f x = F f x /\ Q x (f x)).
```


Treatment of co-recursive values

Example:

```
Definition F s := 0 ::: map succ s. // 0:::1:::2:::3:::...
Definition s := FixValModulo (\approx) F.
Lemma s_fix : s \approx F s.
```


Fixed point combinator for values:

\rightarrow FixValModulo (\approx) p picks a fixed point of modulo (\approx
The insufficient, naive definition:

```
Definition FixValModulo (\approx) F :=
    Ex.(x \approx F x).
```

The appropriate, standard definition:

```
Definition FixValModulo (\approx) F :=
    Ex.(forall y, y \approx x -> y \approx F y).
```


Contraction condition for streams

The contraction condition [Matthews, 1999]:

$$
\text { forall i s1 s2, s1 } \approx_{i} s 2 \rightarrow F \times 1 \approx_{i+1} F s 2
$$

implies the existence of a unique fixed point s modulo bisimilarity, where $\left(\approx_{\dot{i}}\right)$ relates two streams that are identical up to their i-th element.

Illustration with the stream of natural numbers:

```
Hypothesis: s1 *}\mp@subsup{|}{i}{
Goal: F s1 * 
Goal: 0 ::: map succ s1 \mp@subsup{\approx}{i+1}{}0::: map succ s2
Goal: map succ s1 \mp@subsup{|}{i}{}}\mathrm{ map succ s2
Exploit the fact that an application of map preserves
the degree of similarity between two streams.
```


General presentation of c.o.f.e.'s

Fixed point theorem from Matthews (1999) polished by di Gianantonio \& Miculan (2003):

The contraction condition

```
forall i x1 x2,
    (forall j<i, x1 \approx_ x2) ->
    F x1 _ _i F x2
```

ensures the existence of a unique fixed point \times of F modulo (\approx), where:
$-{ }^{-}$has type $A \rightarrow$ A

- I is a type with a transitive well-founded relation <
$-\approx$ is the intersection of the equivalence relations \approx_{i}
- $\left(\approx_{\dot{i}}\right)_{i: I}$ needs to be a complete family of relations

Treatment of co-recursive functions

The contraction condition for co-recursive functions given by Matthews (1999) leads to the following fixed point theorem for co-recursive functions:

```
Lemma FixModulo_spec : forall F f ( ( 
    f = FixModulo (\approx) F ->> cofe ( 
    (forall f1 f2 x i,
    (forall j<i, forall y, f1 y =
    F f1 x _ _i F f2 x) ->
    forall x, f x = F f x.
```


Contraction condition for filter

Matthews (1999) also showed how to derive the fixed point theorem for mixed rec/corec functions:

```
Lemma FixModuloLexico_spec : forall ( (\approx
f = FixModulo ( ( ) F ->> cofe ( ( }\mp@subsup{~}{i}{\prime
    (forall f1 f2 x i, D x ->
        (forall y j, (j,y)<(i,x) -> D y ->> f1 y \approxj f2 y) ->
        F f1 x _ = F f2 x) ->
forall x, D x -> f x \approx F f x.
```


Illustration with the filter function:

$\rightarrow(j, y)<(i, x)$ is a lexicographical comparison.
\rightarrow i decreases when the head value satisfies P.
$\rightarrow x$ decreases when the next element satisfying P gets closer.

Co-recursion with an invariant

The tricky co-recursive definition:

```
Definition F s := 2 ::: filter (\geq 1) s.
```

New generalized form of contraction conditions:

```
forall x1 x2 i,
    x1 \mp@subsup{\approx}{i}{}x2 ^ Q i x1 ^ Q i x2 ->
    F x1 * _i+1 F x2 ^ Q (i+1) (F x1)
```

Illustration: it suffices to consider an invariant stating that the elements before index i are greater than 1:

$$
\text { Definition Q i s := (} \forall j<i \text {, nth } j s \geq 1) \text {. }
$$

Side-condition: the invariant Q has to be continuous. Here, we need to show that if Q i s holds for any i, then s contains only values greater than 1.

Key idea about invariants

Recursive definition \rightarrow specify results post-condition $\mathbf{Q} \mathbf{x}(\mathbf{f} \mathbf{x})$
Co-recursive definition \rightarrow specify prefixes invariant Q is

The unifying fixed point theorem

If the following hypotheses hold

$-F$ is a functional of type $A->A$ (where A is inhabited)

- ($\mathrm{A}, \mathrm{I},<, \approx_{\mathrm{i}}$) is a c.o.f.e.
- Q is a continuous property of type I->A->Prop
- The following contraction condition holds

$$
\begin{aligned}
& \forall i \times 1 \times 2, \\
& \quad\left(\forall j<i, x 1 \approx_{j} \times 2 \wedge Q j \times 1 \wedge Q j \times 2\right) \rightarrow \\
& F \times 1 \approx_{i} F \times 2 \wedge Q \text { i }(F \times 1)
\end{aligned}
$$

Then we can deduce that

- F admits a unique fixed point \times modulo \approx
- Moreover x satisfies the invariant: $\forall i, Q$ i x

Several examples formalized

Recursion:

- log function
- gcd function
- div function
- nested zero function
- trees with lists of subtrees
- Ackermann's function 3
- McCarthy's function

Co-recursion: (≈ 100 lines to establish a new c.o.f.e.)

- constant stream
- mutually-defined streams 9
- filter on streams 13
- "product" of infinite trees 24

Conclusion

1) Optimal fixed points:

- for long, a curiosity about circular program definitions
- the tool of choice to justify circular logical definitions
- allows to separate definitions from their justification

2) Contraction conditions:

- well-foundedness and productivity inside the logic
- support for a very large scope of circular definitions
- all contraction conditions derivable from a single one

$$
(1)+(2)=\text { Fix } F
$$

Thanks!

Extended version of the paper available from: http://arthur.chargueraud.org/research/2010/fix

