The Optimal Fixed Point Combinator

Arthur Charguéraud

INRIA

Interactive Theorem Proving (ITP'10) Edinburgh, 2010/07/14

Example: filter function for streams

Step 1: write a functional, e.g. for filter on streams

Definition Filter filter s :=
 let (x:::t) := s in
 if (P x) then (x ::: filter t) else (filter t).

// "filter" is a partial function mixing recursion and co-recursion

Step 2: construct its fixed point (non-constructively)

Definition filter := Fix Filter. // return type inhabited
Definition filter := FixModulo (≈) Filter. // actual

Step 3: prove a fixed point equation

```
Lemma filter_fix : forall s, infinitely_many P s -> filter s ≈ Filter filter s.
```

Step 4: used that equation to unfold the definition

fj	lter (x:::t)	<pre>// rewrite filter_fix</pre>
≈ Fi	lter filter (x:::t)	// unfold Filter
≈ if	(P x) then (x:::filter t) else	(filter t)

Examples of recursive functions

Basic recursive function:

```
Definition Log log x :=
    if x <= 1 then 0 else 1 + log (x/2).
Definition log := FixModulo (=) Log.
Definition log := Fix Log. // equivalent to the line above</pre>
```

Nested recursion, e.g. the nested zero function:

```
Definition F f x =
    if x = 0 then 0 else f(f(x-1)).
// need to justify that f(x-1) is smaller than x
```

Higher-order recursion, e.g. a function modifying trees:

```
type tree = Leaf of nat | Node of list tree
Definition Incr incr x := match x with
    | Leaf n => Leaf (n+1)
    | Node xs => Node (List.map incr xs)
// need to justify that "incr" is applied to smaller trees
```

Examples of co-recursive values

Definition of co-recursive values:

Definition F s := 0 ::: map succ s. Definition s := FixValModulo (\approx) F. // 0:::1:::2:::3::... Lemma s_fix : s \approx F s.

A trickier definition:

Definition F s := 2 ::: filter (\geq 1) s.

// F defines the stream "2:::2:::...", because $2 \ge 1$.

An invalid definition:

Definition F s := 0 ::: filter (≥ 1) s.
// This functional does not admit a fixed point
Definition s := FixValModulo (≈) F.
// The stream s is unspecified

Program extraction is possible

The fixed point combinators are not constructive.

They rely on Hilbert's epsilon operator, which does not have any computational equivalent.

Extraction towards a "let-rec" is possible:

Extract Constant Fix =>
 "(\bigf -> let x = bigf x in x)". // Haskell code

 \rightarrow Partial correctness of the extracted code is to be expected (although I have not proved it formally)

 \rightarrow Same trick used, e.g., by Bertot *et al* (2002)

Main fixed point approaches

– Well-founded recursion: for partial functions, the domain needs to appear explicitly.

Domain-predicate recursion (Dubois & Donzeau-Gouge, Bove & Capretta) and inductive graph
 predicate (Krauss): works for recursion but does not seem to extend to co-recursion.

– Co-recursion with guard conditions: definitions need to be modified so as to satisfy guard conditions either syntactic or type-based (e.g., work by Bertot and others), but such tricks are not always possible.

 Contraction conditions: allow proving the existence of a unique fixed point on a given domain, but does not help in constructing partial fixed point.

Ingredients and contribution

The combinator is built upon two ingredients:

1) Optimal fixed points

- \rightarrow First formalization of optimal fixed point theory
- \rightarrow First fixed point library using optimal fixed points

2) Contraction conditions

- \rightarrow Generalization of contr. conditions for co-recursion
- \rightarrow Unification of the various contraction conditions

Optimal fixed points

Consider the combinator for total recursive function:

However, the domain must be provided explicitly.

Question: is there a best possible domain D that can be deduced from the functional F alone?

Positive answer [Manna and Shamir, 1975]:

Any functional admits an *optimal* fixed point.

Domains of fixed points

The union of the domains of all the fixed points might not be the domain of a fixed point:

 \rightarrow This generally happens with inconsistent fixed points

Domain of the optimal fixed point

The restriction to the set of arguments for which all fixed points return the same results:

 \rightarrow This domain admits exactly one fixed point, which captures the maximal amount of non-ambiguous information contained in the functional.

Optimal fixed point combinator

The optimal fixed point of a functional F is the largest generally-consistent fixed point of F.

(A fixed point of F is generally-consistent if it does not disagree with any other fixed point of F).

```
Definition Fix A B (F:(A->B)->(A->B)) : A->B :=
```

```
ɛf. (optimal_fixed_point_of F f).
```

// Remark: the type B is required to be inhabited.

// Partial functions are represented in the logic as pairs of type $(A \rightarrow Prop)*(A ->B)$. The optimal fixed point returned by the combinator Fix is undefined outside of the optimal domain.

Another construction (Gonthier, 2005)

Definition Fix A B F := fun x =>

let f := $\varepsilon f.(\exists D. fixed_point_on D F f \land x \in D)$ in (f x).

Contraction conditions

A contraction condition is a sufficient condition for a functional to admit a unique fixed point, expressing the fact that the functional *brings its arguments closer*.

- Guarantees unique fixed point in Banach spaces.

 $|| F(x) - F(y) || \le \alpha \cdot || x - y ||$ with $\alpha < 1$

– **Paulson** (1992): implement the theory of inductive definitions in Isabelle/HOL.

– **Matthews** (1999): formalize non-guarded corecursive definitions.

– **Matthews & Krstić** (2003): formalize partial recursive functions with nested calls.

Fixed point theorems

How to use contraction conditions to reason on results of the optimal fixed point combinator:

1) Given a functional F, build f := Fix F.

2) Prove that **F** satisfies a contraction condition on some domain **D**.

3) Deduce that f satisfies the fixed point equation on D.

optimal domain of F

Theorem Fix_spec : forall F D f,
 f = Fix F -> contractive_on D F ->
 forall x, D x -> f x = F f x.

What's next

Application of the optimal fixed point combinator using existing contraction conditions:

- Total recursion
- Partial function
- Nested recursion

- Co-recursive values
- Co-recursive functions
- Mixed rec./co-recursive

(Supported but not presented: higher-order recursion)

Generalization and unification of the various contraction conditions:

- Generalization of the contraction condition
- Presentation of the unifying fixed point theorem

Treatment of total functions

Fixed point theorem for total recursive functions:

```
Lemma Fix_spec : forall f F R, well_founded R ->
  f = Fix F ->
  (forall f1 f2 x,
     (forall y, R y x -> f1 y = f2 y) ->
     F f1 x = F f2 x) ->
  (forall x, f x = F f x).
```

Illustration with the functional Log:

Treatment of partial functions

Restriction to arguments from a domain D:

Lemma Fix_spec : forall f F R D, well_founded R ->
 f = Fix F ->
 (forall f1 f2 x, D x ->
 (forall y, D y -> R y x -> f1 y = f2 y) ->
 F f1 x = F f2 x) ->
 (forall x, D x -> f x = F f x).

- \rightarrow The argument **x** is assumed to be in the domain **D**.
- \rightarrow Recursive calls must be made to values y inside **D**.
- \rightarrow The fixed point equation is available only on **D**.

Treatment of nested recursion

The basic contraction condition does not suffice. Consider for example the nested zero function:

Definition F f x = if x = 0 then 0 else f(f(x-1)).

 \rightarrow For the outer recursive call f(f(x-1)), we need to know that the argument f(x-1) is smaller than x.

 \rightarrow We need to know that the function **f** returns zero.

Adding an invariant [Matthews & Krstić, 2003]:

```
Lemma Fix_spec : forall f F R Q, well_founded R ->
    f = Fix F ->
    (forall f1 f2 x,
        (forall y, y < x -> f1 y = f2 y /\ Q y (f1 y)) ->
        F f1 x = F f2 x /\ Q x (F f1 x)) ->
        (forall x, f x = F f x /\ Q x (f x)).
```

Treatment of co-recursive values

Example:

Definition F s := 0 ::: map succ s. // 0:::1:::2:::3:::...

```
Definition s := FixValModulo (\approx) F.
```

Lemma s_fix : $s \approx F s$.

Fixed point combinator for values:

 \rightarrow FixValModulo (\approx) F picks a fixed point of F modulo (\approx)

The insufficient, naive definition:

```
Definition FixValModulo (\approx) F := \varepsilon x.(x \approx F x).
```

The appropriate, standard definition:

Definition FixValModulo (\approx) F := & & & (forall y, y \approx x -> y \approx F y).

Contraction condition for streams

The contraction condition [Matthews, 1999]:

forall i s1 s2, s1 \approx_i s2 -> F x1 \approx_{i+1} F s2

implies the existence of a unique fixed point s modulo bisimilarity, where (\approx_i) relates two streams that are identical up to their i-th element.

Illustration with the stream of natural numbers:

```
Hypothesis: s1 \approx_i s2
Goal: F s1 \approx_{i+1} F s2
Goal: 0 ::: map succ s1 \approx_{i+1} 0 ::: map succ s2
Goal: map succ s1 \approx_i map succ s2
Exploit the fact that an application of map preserves the degree of similarity between two streams.
```

General presentation of c.o.f.e.'s

Fixed point theorem from Matthews (1999) polished by di Gianantonio & Miculan (2003):

The contraction condition

forall i x1 x2, (forall j<i, x1 \approx_j x2) -> F x1 \approx_i F x2

ensures the existence of a unique fixed point \mathbf{x} of \mathbf{F} modulo (\approx), where:

- **F** has type $A \rightarrow A$
- I is a type with a transitive well-founded relation <</p>
- \approx is the intersection of the equivalence relations \approx_{i}
- (\approx_i)_{i:I} needs to be a *complete* family of relations

Treatment of co-recursive functions

The contraction condition for co-recursive functions given by Matthews (1999) leads to the following **fixed point theorem for co-recursive functions:**

Lemma FixModulo_spec : forall F f $(\approx_i)_{i \in I}$, f = FixModulo (\approx) F -> cofe $(\approx_i)_{i \in I}$ -> (forall f1 f2 x i, (forall j<i, forall y, f1 y \approx_j f2 y) -> F f1 x \approx_i F f2 x) -> forall x, f x \approx F f x.

Contraction condition for filter

Matthews (1999) also showed how to derive the **fixed point theorem for mixed rec/corec functions:**

```
Lemma FixModuloLexico_spec : forall (\approx_i)_{i \in I} F f D,
f = FixModulo (\approx) F -> cofe (\approx_i)_{i \in I} ->
(forall f1 f2 x i, D x ->
(forall y j, (j,y)<(i,x) -> D y -> f1 y \approx_j f2 y) ->
F f1 x \approx_i F f2 x) ->
forall x, D x -> f x \approx F f x.
```

Illustration with the filter function:

- \rightarrow (j,y)<(i,x) is a lexicographical comparison.
- \rightarrow i decreases when the head value satisfies P.

 \rightarrow x decreases when the next element satisfying P gets closer.

Co-recursion with an invariant

The tricky co-recursive definition:

```
Definition F s := 2 ::: filter (\geq 1) s.
```

New generalized form of contraction conditions:

forall x1 x2 i, x1 \approx_i x2 \wedge Q i x1 \wedge Q i x2 -> F x1 \approx_{i+1} F x2 \wedge Q (i+1) (F x1)

Illustration: it suffices to consider an invariant stating that the elements before index **i** are greater than **1**:

```
Definition Q i s := (\forall j < i, nth j s \ge 1).
```

Side-condition: the invariant Q has to be *continuous*.

Here, we need to show that if **Q i s** holds for any **i**, then **s** contains only values greater than **1**.

Key idea about invariants

Recursive definition \rightarrow **specify results**

post-condition Q x (f x)

Co-recursive definition → specify prefixes invariant Q i s

The unifying fixed point theorem

If the following hypotheses hold

- **F** is a functional of type $A \rightarrow A$ (where **A** is inhabited)
- (A,I,<, \approx_i) is a c.o.f.e.
- Q is a continuous property of type I->A->Prop
- The following contraction condition holds

 \forall i x1 x2, (\forall j<i, x1 ≈_j x2 ∧ Q j x1 ∧ Q j x2) → F x1 ≈_i F x2 ∧ Q i (F x1)

Then we can deduce that

- **F** admits a unique fixed point **x** modulo \approx
- Moreover x satisfies the invariant: $\forall i, Q i x$

Several examples formalized

Recursion:	Lines of proofs		
 log function 	2		
 gcd function 	3		
 div function 	3		
 nested zero function 	3		
 trees with lists of subtrees 	4		
 Ackermann's function 	3		
 McCarthy's function 	8		
Co-recursion: (\approx 100 lines to establish a new c.o.f.e.)			
 constant stream 	3		
 mutually-defined streams 	9		
 filter on streams 	13		
 "product" of infinite trees 	24		

Conclusion

1) Optimal fixed points:

- for long, a curiosity about circular program definitions
- the tool of choice to justify circular *logical* definitions
- allows to separate definitions from their justification

2) Contraction conditions:

- well-foundedness and productivity inside the logic
- support for a very large scope of circular definitions
- all contraction conditions derivable from a single one

(1) + (2) = Fix F

Thanks!

Extended version of the paper available from: http://arthur.chargueraud.org/research/2010/fix