
Better typing errors for OCaml
Arthur Charguéraud

Inria

http://arthur.chargueraud.org/

Overview
State of the art

• Dozens of research papers on reporting type errors in ML...
• ... none of these ideas ever reached the OCaml compiler!

Motivation
• Get OCaml to produce better error messages, for beginners...
• ... and maybe for you, too!

Result
• A patch to the type-checker, providing alternative error messages
for ill-typed top-level definitions.

2

Missing unit argument
let x = read_int in (* missing unit argument *)
print_int x

ocamlc

File "examples/example_missing_unit_readint.ml", line 2, characters 10-11:
Error: This expression has type unit -> int
 but an expression was expected of type int.

ocamlc -easy

File "examples/example_missing_unit_readint.ml", line 2, characters 0-9:
Error: The function ̀print_int' expects one argument of type [int],
 but it is given one argument of type [unit -> int].

You probably forgot to provide ̀()' as argument somewhere.

If reaching a unification error between type unit -> ?t and ?u, then
report You probably forgot to provide ̀()' as argument somewhere.

3

Missing bang
let r = ref 1 in
print_int r (* should be [!r] *)

ocamlc

File "examples/example_ref_missing_bang.ml", line 2, characters 10-11:
Error: This expression has type int ref
 but an expression was expected of type int.

ocamlc -easy

File "examples/example_ref_missing_bang.ml", line 2, characters 0-9:
Error: The function ̀print_int' expects one argument of type [int],
 but it is given one argument of type [int ref].

You probably forgot a ̀!' operator somewhere.

If reaching a unification error between type ?t ref and ?u, then
report You probably forgot a ̀!' operator somewhere.

4

Missing rec
let facto n = (* missing [rec] *)
 if n = 0 then 1 else n * facto (n-1)

ocamlc

File "examples/example_let_missing_rec.ml", line 2, characters 28-33:
Error: Unbound value facto

ocamlc -easy

File "examples/example_let_missing_rec.ml", line 2, characters 28-33:
Error: Unbound value facto.

You are probably missing the ̀rec' keyword on line 1.

Check whether the unbound variable would have been in the scope if
it had been bound by a let rec instead of a let.

5

Missing else branch
let ordered_list_with x y =
 if x <= y then [x;y]
 else if x > y then [y;x]

ocamlc

File "examples/example_missing_else.ml", line 3, characters 23-27:
Error: This variant expression is expected to have type unit
 The constructor :: does not belong to type unit

ocamlc -easy

File "examples/example_missing_else.ml", line 3, characters 22-27:
Error: This expression is the result of a conditional with no else branch,
 so it should have type [unit] but it has type ['a list].

If a subterm of a particular language construct does not have the
expected type, then explain why this type is expected.

6

Reducing the left-to-right bias
let f b =
 if b then 0 else 3.14 (* should have been 0. *)

ocamlc

File "examples/example_incompatible_else.ml", line 2, characters 19-23:
Error: This expression has type float but an expression was expected of type
 int.

ocamlc -easy

File "examples/example_incompatible_else.ml", line 2, characters 2-23:
Error: The then-branch has type [int]
 but the else-branch has type
 [float].
 Cannot unify type [int] with type [float].

To type-check a conditional or a pattern matching, first type-check
each branch independently, then unify the branch types one by one.

7

Remaining left-to-right bias
let f b x =
 if b
 then print_int x
 else print_float x

ocamlc

File "examples/example_if_propagate.ml", line 5, characters 21-22:
Error: This expression has type int but an expression was expected of type
 float.

ocamlc -easy

File "examples/example_if_propagate.ml", line 5, characters 9-20:
Error: The function ̀print_float' expects one argument of type [float],
 but it is given one argument of type [int].

Unification may still perform side-effects accross branches; yet, the
error typically involves a free variable, which often is to blame.

8

Errors for ill-typed applications
let _ =
 ignore (Array.make 0.0 20)

ocamlc

File "examples/example_make_swap.ml", line 2, characters 21-24:
Error: This expression has type float but an expression was expected of type
 int.

ocamlc -easy

File "examples/example_make_swap.ml", line 2, characters 10-20:
Error: The function ̀Array.make' expects 2 arguments of types [int]
 and ['a], but it is given 2 arguments of types [float] and [int].

If an application fails to type-check, locate the error on the entire
application and display: function ̀foo' expects arguments of type
[bla] and [bla], but it is given arguments of type [bla] and
[bla].

9

Confusion on arithmetic operators
let _ =
 print_float (2.0 + 3.0) (* should be [+.] instead of [+] *)

ocamlc

File "examples/example_add_bad.ml", line 2, characters 15-18:
Error: This expression has type float but an expression was expected of type
 int.

ocamlc -easy

File "examples/example_add_bad.ml", line 2, characters 19-20:
Error: The function ̀+' expects 2 arguments of types [int] and [int],
 but it is given 2 arguments of types [float] and [float].

Errors are no longer reported at a location ahead of the actual error.

10

Missing parentheses on a negation
let _ =
 succ -1 (* missing parentheses around [-1] *)

ocamlc

File "examples/example_f_minus_one.ml", line 2, characters 3-7:
Error: This expression has type int -> int
 but an expression was expected of type int.

ocamlc -easy

File "examples/example_f_minus_one.ml", line 2, characters 8-9:
Error: The function ̀-' expects 2 arguments of types [int] and [int],
 but it is given 2 arguments of types [int -> int] and [int].

The new error makes it clear that -̀' is parsed as a binary operator.

11

Errors on higher-order function calls
let _ = List.map (fun x -> x + 1) [2.0; 3.0]
(* should have been [+.] instead of [+], or
 should have been [2;3] instead of [2.0;3.0] *)

ocamlc

File "examples/example_map_bad.ml", line 1, characters 35-38:
Error: This expression has type float but an expression was expected of type
 int.

ocamlc -easy

File "examples/example_map_bad.ml", line 1, characters 8-16:
Error: The function ̀List.map' expects 2 arguments of types ['a -> 'b]
 and ['a list], but it is given 2 arguments of types [int -> int]
 and [float list].

The new error explains the type of the anonymous function involved.

12

Occur-check errors
let rev_filter f l =
 List.fold_left (fun x acc -> if f x then x::acc else acc) [] [1; 2; 3]
(* swapped the parameters of the higher-order function *)

ocamlc

File "examples/example_fold_left_swap_app_2.ml", line 2, characters 43-44:
Error: This expression has type 'a list
 but an expression was expected of type 'a.

 The type variable 'a occurs inside 'a list

ocamlc -easy

File "examples/example_fold_left_swap_app_2.ml", line 2, characters 2-16:
Error: The function ̀List.fold_left' expects 3 arguments of types
 ['a -> 'b -> 'a] and ['a] and ['b list],
 but it is given 3 arguments of types ['c -> 'c list -> 'c list]
 and ['d list] and [int list].

13

Summary
• Custom messages for missing `()' and `!' and `rec'.

• Custom messages for subterms of particular constructs.

• Decreased left-to-right bias for `if', `match', and function calls.

• No reporting of errors before their actual locations (binary operators).

• Support for optional and named arguments in function calls.

• No change to errors on top-level definitions involving GADTs.

• No change to module type-checking.

14

Give it a try!

https://github.com/charguer/ocaml

Send feedback!

15

